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Abstract

Factor models are widely used in summarizing large datasets with few underlying latent

factors and in building time series forecasting models for economic variables. In these models,

the reduction of the predictors and the modeling and forecasting of the response y are carried out

in two separate and independent phases. We introduce a potentially more attractive alternative,

Sufficient Dimension Reduction (SDR), that summarizes x as it relates to y, so that all the

information in the conditional distribution of y|x is preserved. We study the relationship between

SDR and popular estimation methods, such as ordinary least squares (OLS), dynamic factor

models (DFM), partial least squares (PLS) and RIDGE regression, and establish the connection

and fundamental differences between the DFM and SDR frameworks. We show that SDR

significantly reduces the dimension of widely used macroeconomic series data with one or two

sufficient reductions delivering similar forecasting performance to that of competing methods in

macro-forecasting.
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1 Introduction

This paper introduces Sufficient Dimension Reduction (SDR) to macro-forecasting and studies the

relationship between SDR and popular estimation methods in forecasting, such as ordinary least

squares (OLS), dynamic factor models (DFM), partial least squares (PLS) and RIDGE regression.

In particular, we establish the connection and fundamental differences between the DFM and

SDR frameworks. We also extend some key SDR results to a time series setting and offer a first

assessment of the effectiveness of SDR methods in a real-world forecasting application.1

The availability of richer datasets, in conjunction with the seminal work of Stock and Watson

(1998) [69], has attracted widespread interest in Dynamic Factor Models (DFM) that resulted in a

large body of research.2 The core contributions in DFM have largely focused on the assumptions

needed in order to identify and estimate asymptotically a latent factor structure in multivariate

data, as outlined in the early work of Stock and Watson (1998) [69] and in subsequent studies by

Bai and Ng (2002) [4], Bai (2003) [3], and the more recent contributions by Onatski (2009 and

2010) [63][64], Alessi, Barigozzi and Capasso (2010) [2] and Ahn and Horenstein (2013) [1], among

others.3.

A considerable number of studies, following Stock and Watson (1998, 2002a and 2002b) [69][70][71],

have focused on the use of DFMs in forecasting. In attempts to boost the forecasting performance

of DFMs, selected tools from the plethora of reduction methods in statistical and machine learn-

ing were explored in the econometric literature. Notable early examples are Bai and Ng (2008)

[5], DeMol, Giannone and Reichlin (2008) [33] and, more recently, Stock and Watson (2012) [76],

Kelly and Pruitt (2015) [55] and Groen and Kapetanios (2014) [44]. The survey by Ng (2013) [62]

provides additional references, as well as a discussion on targeting, a central issue in this paper.

1The study by Barbarino and Bura (2015) [8] also provides an introduction to SDR techniques in macro-forecasting,

however it is more applied in nature and it provides fewer details on the connection between SDR and DFM frame-

works.
2Surveys on the DFM literature include Stock and Watson (2006 and 2011) [73][75] and Bai and Ng (2008) [6].

In this paper we exclusively discuss moment-based estimation methods (non-parametric, in some parlance) side-

stepping the treatment of model-based estimation (maximum likelihood) and the use of the Kalman filter. In part

as a consequence of this choice the empirical application will abstract from issues specific to nowcasting such as data

with mixed frequencies and “ragged edges” recently surveyed by Bambura, Giannone and Reichlin (2011) [7].
3In this paper we concentrate on static factors in order to keep matters simple and draw an uncluttered comparison

between SDR and DFMs and our references reflect this choice. Fundamental contributions on the factor structure by

Forni, Hallin, Lippi and Reichlin (1998, 2000, 2001, 2004, 2005) and further developments are neatly organized and

referenced in the surveys by Stock and Watson (2006 and 2011) [73][75]
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Dimension reduction methods in regression fall into two categories: variable or model selection,

where a subset of the original predictors is selected for modeling the response, and feature extraction,

where linear combinations of the regressors, frequently referred to as “derived,” replace the original

regressors. The underlying assumption in variable selection is that the individual predictors have

independent effects on the response, which is typically violated in econometric time series that have

varying degrees of correlation. Thus, the focus in the econometrics literature, including this paper,

is on derived predictor methods.

Studies that exploit a factor structure in forecasting follow a recurrent theme: 1) First the

dimension of a large panel of data is reduced to a sufficiently “lean” factor structure and 2) then

the factors are used to forecast a target variable y. The reduction step has so far been largely

disconnected from the targeting step, likely a legacy of the origin of factor models. Targeting

comes into the picture only after a condensed latent structure is estimated and is resolved by

postulating a linear relationship between the target variable y and the factors.4

In contrast, Sufficient Dimension Reduction (SDR) is a collection of novel tools for reducing

the dimension of multivariate data in regression problems without losing inferential information

on the distribution of a target variable y.5 SDR focuses on finding sufficient, in the statistical

sense, reductions of a large set of explanatory variables in order to model a target response y. The

reduction and targeting are carried out simultaneously as SDR identifies a sufficient function of the

regressors, R(x), that preserves the information in the conditional distribution of y|x.

SDR methods do not resort to a latent factor structure. It is assumed that the data generating

process (DGP) directly generates the set of regressors x without the mediation of latent factors, and

conditions that ensure identification and estimation are placed directly on the marginal distribution

of x. Finally, specifying the link between the target y and the panel of regressors x is not required

in SDR, further differentiating it from OLS, DFM, RIDGE or PLS, which all conjecture that y

depends linearly on common latent factors.

4Stock and Watson (2006) [73] devote a paragraph on the two possible ways of accommodating a target variable

y on p. 526, however all assume that y is generated by the same set of unobserved factors as the other variables in

the panel.
5Li (1991) [57] introduced the concept of inverse regression as a dimension reduction tool in Sliced Inverse Re-

gression (SIR) and SIR will be the SDR method of choice in this paper. Cook and his collaborators formalized the

field in several papers (e.g. Cook and Weisberg (1991) [31]; Cook (1994), (1998b), (2007) [22][24][26]; Cook and Lee

(1999) [29]; Bura and Cook (2001a and 2001b) [13][14]; Cook and Yin (2001) [32]; Chiaromonte, Cook and Li (2002)

[20]; Cook and Ni (2005) [30]; Cook and Forzani (2008 and 2009) [27][28]) and a book (Cook 1998a [23]), where much

of the SDR terminology was introduced.
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SDR was developed for cross-sectional applications and the associated inference results, such

as consistency of the estimates of the sufficient reductions and tests for dimension, were derived

under the assumption of random samples. We show that our sufficient reduction estimators are

consistent for covariance stationary predictor time series. Under additional assumptions, we can

also obtain their asymptotic normality and tests of dimension.

In Section 2 we discuss the challenges of macro-forecasting in a data rich environment and

describe the DFM framework approach. We also propose an alternative forecasting framework

based on SDR methods and contrast it with the DFM framework, providing a connection between

the two. Section 3 is a general exposition of SDR and our proposal for an SDR-based forecasting

framework, including extensions to a time-series setting of sliced inverse regression (SIR), the SDR

method we choose to present and apply in the empirical Section 5. Section 3 also contains the

conceptual motivation for targeted reductions.

In Section 4 we review other linear dimension reduction methods that have been proposed

within the DFM framework and are used in the empirical application. In order to draw analogies

and highlight differences with results in the macro-forecasting literature, a real-world forecasting

experiment with a large panel of macro variables, as in Stock and Watson (2002a and 2002b)

[70][71], is conducted, although our data source is the novel repository FRED-MD maintained by

the St. Louis Fed and documented by McCracken and Ng (2015) [60]. Section 5 contains the

description and results of a horserace between the estimators we consider in the paper focusing on

forecasting accuracy in predicting various targets in an out-of-sample forecasting experiment. We

find that SIR achieves similar forecasting performance as the other methods with the important

difference that in most cases it does so with just one or two linear combinations of the predictors.

Methods that are constrained to use just one linear combination, such as OLS and RIDGE do not

perform well in general, and PCR and PLS usually need more than two components to achieve

their minimum mean square forecast error. We conclude in Section 6.

2 A Unified Framework for Forecasting with a Large Set of Ex-

planatory Variables

A large set of p explanatory variables xt is available to forecast a single variable yt using a sample of

size T . In statistical and machine learning this problem is approached by considering all regressors
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as potentially useful in modeling yt via the model

yt+h = α′xt + γ ′wt + εt+h, (2.1)

where wt may contain additional regressors such as lags of yt, in a time-series context. If all

available information up to time t and time-series dynamics are well captured by (2.1), it is natural

to assume that E(εt+h) = 0, and that both α′xt and γ ′wt are uncorrelated with εt+h. To simplify

notation, we incorporate all predictors into xt and drop the term γ ′wt to obtain the forecast model

yt+h = α′xt + εt+h (2.2)

The optimal forecast from (2.2)

yt+h|t = α′xt (2.3)

is unfeasible since α is unknown. However, the assumptions underlying model (2.2) are conducive

to ordinary least squares (OLS) as the estimator of choice for the parameters α, leading to the

feasible forecast

yt+h|t = α̂′OLSxt (2.4)

In this set-up all regressors are potentially useful in forecasting. Yet, estimation in (2.2) via OLS

can be problematic when p is large relative to T , or variables in xt are nearly collinear, as is

often the case in the macro forecasting literature [see, e.g., Stock and Watson (2006) [73]].6 The

variance of the prediction (2.4) is of order p/T. Thus, when p is large, estimation methods that

trade bias with variance may dominate OLS under the mean squared error (MSE) criterion, even

under assumptions that guarantee that the OLS estimator is unbiased. In particular, when p ≥ 3,

the OLS estimator is not admissible under the MSE criterion.7

In their survey, Stock and Watson (2006) [73] start their discussion with model (2.2). However,

after pointing out difficulties with such model and OLS and in line with their previous work [see

6This is likely to occur if the set of explanatory variables contains an index and several sub-indexes; e.g., industrial

production (IP) along with its sub-indexes such as manufacturing IP or mining IP, or when variables are linked by

identities or tight relationships, such as the inclusion of assets linked by arbitrage conditions.
7The MSE of any estimator θ̂ of a parameter θ is given by MSE(θ̂) = Bias2(θ̂)+var(θ̂). Although among unbiased

estimators the OLS estimator θ̂OLS has minimum mean squared error, other estimators θ̂, some also linear, may have

uniformly smaller MSE by trading off bias for variance, so that

MSE
(
θ̂, θ
)
≤MSE

(
θ̂OLS , θ

)
for all θ with strict inequality for some θ. James and Stein (1961) showed that, for p ≥ 3, the OLS estimator is not

admissible under the MSE; a striking result that inaugurated research in shrinkage estimation.
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Stock and Watson (1998 and 2002a) [69][70]], they resolve to use their factorial structure apparatus

assuming from the outset that the forecast model is

yt+h = γ ′yft + εt+h (2.5)

with corresponding unfeasible forecast,

yt+h|t = γ ′yft (2.6)

The added difficulty in this setup is that not only the parameters γy, but also ft are unknown

and need to be estimated. Stock and Watson showed that their factorial structure together with

additional assumptions ensure the factors are identifiable and estimable by principal components,

say f̂t, which in turn can be plugged in (2.5)

yt+h|t = γ ′y f̂t + εt+h (2.7)

They also obtained that the OLS estimation of (2.7) closely approximates asymptotically the un-

feasible forecast (2.6).

The DFM approach to the forecasting equation raises two issues: How applicable the reduced

population model (2.5) relative to the population model (2.2) is for forecasting, and whether the

dimension of the exogenous variables x in the population model (2.2) can be reduced so that one

can replace it with population model (2.5) and still obtain accurate prediction.

Regarding the first question, Groen and Kapetanios (2014) [44] showed that, under a factor

structure, the reduced forecasting population model (2.5) may be too restrictive a shortcut, and

concluded that the population model (2.2) entails fewer misspecification errors. We go one step

further in reducing misspecification risk and in subsequent sections we show how our SDR approach

allows to further relax (2.2) to

yt+h = g(α′xt, εt+h) = g(α′1xt, . . . ,α
′
dxt, εt+h) (2.8)

where α denotes a p× d matrix of rank d < p. SDR allows the target to be a non linear function

g(·) of the predictors xt. Non-linear g’s allow for more than one linear combinations or projections

of the regressors to model yt in order to preserve all the information that the covariates xt carry

about yt+h.8

8By contrast, when g(·) comprises of multiple linear combinations, as for instance in PCR, they can all be combined

in one.
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We focus on the second question in Proposition 1, which states the conditions under which it is

possible to reduce the dimension of x without the need of assuming an underlying factor structure.

These conditions have not been considered in the DFM forecasting literature or by Groen and

Kapetanios (2014) [44] . Moreover, they pivot the attention to the probability distributions that

satisfy them. Proposition 1 assumes that population model (2.2) is correct, replaces the assumption

of an underlying factor structure with a set of “leaner” conditions and concludes that reduced

model (2.5) is a good approximation to population model (2.2). The absence of an underlying

factor structure and companion identification assumptions implies that model (2.5) is not necessarily

tied to PCR and offers a framework that subsumes PCR, PLS and RIDGE, and other estimators

provided that they are linear projections of the predictors.

Proposition 1 Suppose x is a random p-vector with finite first two moments. Let y = α′x where

α ∈ Rp is unknown, and f = β′x, where the p× r matrix β is such that

(i) for each α, E(α′x|β′x = f) is linear in f ∈ Rr (LC);

(ii) for each α, Var(α′x|β′x = f) is constant in f ∈ Rr (CVC).

Then, y can be decomposed into the sum of a linear function of f and a remainder or error term,

as follows,

y = µy + c′(f − E(f)) + ε (2.9)

where c = (β′Σxβ)−β′Σxα ∈ Rr, µy = E(y), E(ε|f) = 0 and Var(ε|f) is constant. 9

Proof. Let E(x) = µx, Var(x) = Σx, and for simplicity, without loss of generality assume

E(f) = 0. Condition (i) implies that E(y|f) = E(α′x|β′x) = µy + c′(β′x) for some constants µy

and c ∈ Rr. Therefore, E(y) = µy and c = Var(β′x)−Cov(β′x,α′x) = (β′Σxβ)−β′Σxα, the pop-

ulation OLS slope (see Goldberger 1991, p. 54 [43]). Next, Var(y) = Var(E(y|f)) + E(Var(y|f)) =

Var
(
µy + c′(β′x)

)
+ σ2 = c′β′Σxβc + σ2. That is, σ2 = var(y|f) = var(y) − c′β′Σxβc, which is

constant by condition (ii). Combining the above obtains (2.9) with ε = y − E(y|f).

We draw attention to the similarity between (2.2) and the requirement in Proposition 1 that

y = α′x, which can be relaxed to y = α′x + ε, with E(ε) = 0 and cov(ε,x) = 0. Proposition 1

ascertains that one can replace x by a lower dimensional projection f in the forecasting model if the

distribution of the predictors x satisfies the linearity condition (i) (henceforth LC) and constant

9A− denotes a generalized inverse of a matrix A.
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variance condition (ii) (henceforth CVC), and then use the reduced model (2.9) to forecast y using

OLS.

An important aspect of Proposition 1 is that any β that satisfies conditions (LC) and (CVC)

produces a good approximation to (2.2). In this regard, Proposition 1 suggests a common umbrella

under which one can organize and understand population objects in the form of feature extraction

and the estimators that are their sample counterparts.

Specifically, focusing on the conditional expectation in (2.9),

E(y − µy|β′x) = α′Σxβ(β′Σxβ)−β′(x− E(x))

= α′P′β(Σx)
(x− E(x)) (2.10)

where Pβ(Σx) = β(β′Σxβ)−β′Σx is the projection operator onto R(β) relative to the inner product

(a,b) = a′Σxb. If β is of full rank r, then Pβ(Σx) = β(β′Σxβ)−1β′Σx and c = (β′Σxβ)−1β′Σxα.

Importantly, the calculation of c and Pβ(Σ) does not require Σx = var(x) be invertible.10

For a given x value, how close the predicted y value, E(y|x) will be to the truth is reflected

by the length or norm of I − Pβ(Σx) in (2.10), which is controlled solely by β. In consequence,

ordering estimators β′x with respect to their forecasting accuracy is tantamount to identifying β’s

satisfying (LC) and (CVC) with smaller norm. As a result, principal components need not be the

best aggregation method.

If only the linearity condition (LC) holds; that is, the first conditional moment of y given f is

linear in f but its conditional variance is no longer constant, the following corollary states that the

forward model can be heteroskedastic.

Corollary 1 Suppose x is a random p-vector with finite first moment. Let y = α′x where α ∈ Rp

is unknown, and f = β′x, where the p× r matrix β is such that

(i) for each α, E(α′x|β′x = f) is linear in f ∈ Rr.

Then, y can be decomposed into the sum of a linear function of f and a remainder or error term,

as follows,

y = µy + c′(f − E(f)) + ε

with c = (β′Σxβ)−β′Σxα ∈ Rr, µy = E(y), E(ε|f) = 0 and Var(ε|f) = σ2(f). �

10Therefore, this set-up allows the possibility that OLS might not be well defined.
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The proof of Corollary 1 follows the proof of Proposition 1 by writing y = E(y|f) + y − E(y|f) =

E(y|f) + ε, with the difference that var(ε) = var(y|f) = σ2(f) may depend on f = β′x. If β is of

full rank r, then c = (β′Σxβ)−1β′Σxα ∈ Rr.

Comparing DGPs – In the DFM literature it is assumed that the source of randomness of

the data generating process (DGP) stems from the latent factors f that generate the observable

data x. As a consequence, since the factors are unobserved, mostly unverifiable assumptions that

guarantee their identifiability are required. If the source of randomness is instead in the observables

x, as in Proposition 1, then the “factors” f become simple linear reductions of the information in

the observables. Such linear reductions might be chosen and formed by the econometrician or

a statistical agency, and not inherently by the DGP. Different reductions will in general possess

different properties, depending on the β used to construct them and the econometrician in principle

can study such properties. Moreover, Proposition 1 pivots the focus back on the observables x and

on the distributional assumptions on the observables under which conditions (LC) and (CVC) are

satisfied.11

LC and CVC under Normality – Conditions (LC) and (CVC) of Proposition (1) are difficult to

verify in practice given that the set of β ∈ Rp×r for which they hold is unknown. However, they

are satisfied for any β if x is multivariate normal. In Section 5.2, we show that joint normality in

our panel of macro variables is rejected.

LC under Ellipticity – Condition (LC) on the marginal distribution of the predictors, which is

fundamental for SDR and reappears in (3.3), is satisfied for all β ∈ Rp×r, if the predictors have

an elliptically contoured distribution [See Eaton (1986)[37]]. The elliptically contoured family of

distributions includes the multivariate normal and Student’s t. The important intuition of De Mol et

al. (2008) [33] is that strong cross-correlation of the variables included in macro panels explains the

similar performance of PCR, RIDGE and LASSO. Herein, we provide a different interpretation of

the comparable forecasting performance of these feature selection methods: as shown in Section 5.2

ellipticity appears to be an empirical characteristic of the large panel of macro variables, so that

(LC) is satisfied and Corollary 1 applies. In this case, Corollary 1 implies that all estimators that

can be written as a linear transformation of x will be roughly equivalent in summarizing the large

x vector and linear regression forecast models will likely result in approximately equal MSFEs.

11Although conditions (i) and (ii) are difficult to check in practice they are based on observables, progress advocated

by Bai (2003) [3], who acknowledges the problems arising from DFM assumptions placed on unobservable quatities.
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LC and CVC under More General DGPs – Leeb (2013) [56] and Steinberger and Leeb (2015)

[68] studied when conditions (LC) and (CVC) in Proposition 1 are satisfied. Building on a line

of work initiated by Diaconis and Freedman (1984) [34] and Hall and Li (1993) [45], Steinberger

and Leeb (2015) [68] showed that under comparatively mild conditions on the distribution of x,

both conditions (LC) and (CVC) are approximately satisfied for most matrices β. In other words,

they showed that most conditional means are approximately linear and most conditional variances

are approximately constant for a large class of non-Gaussian multivariate distributions, when the

conditioning is on lower-dimensional projections provided that p is sufficiently large relative to r.

Conditions (LC) and (CVC) are also shown to hold as p→∞, where r may increase with p at the

order r = o(log(p)). This is an important result as the requirement of linear conditional means and

constant conditional variances, which initially seems as quite restrictive, is actually satisfied, in an

approximate sense, by a large class of distributions. Regarding (LC) in particular, Steinberger and

Leeb (2015) [68] showed that if a random p-vector x has a Lebesgue density, the mean of certain

functions of x is bounded and that certain moments of x are close to what they would be in the

Gaussian case [see the bounds (b1) and (b2) in Th. 2.1, Steinberger and Leeb (2015)[68]], then the

conditional mean of x given β′x is linear in β′x for a p×r matrix β, as p→∞ and r is either fixed

or grows very slowly at the rate r/ log p → 0. An appealing feature of these results is that they

rely on bounds that can be estimated from data. Steinberger and Leeb’s result therefore ascertains

that condition (LC) is satisfied by a large class of predictor distributions. Thus, first-moment SDR

estimators, such as Sliced Inverse Regression (SIR) in the ensuing Section 4.5, can be widely used

to estimate basis elements of the column space of v in the reduction R(xt) = v′xt.

Summary – Proposition 1 takes a step back relative to the typical DFM shortcut of assuming

that population model (2.5) is true and provides conditions under which it is possible to reduce

the information of a large set of observables x so that (2.5) is the true model for forecasting y.

Additionally, it replaces the many heterogeneous assumptions found in the DFM literature with a

simple set of conditions and offers a common paradigm for OLS, PCR, RIDGE and PLS and other

feature extraction estimators. As a consequence it provides an insight for the success of simple

linear forward regression models in modeling and forecasting.

2.1 The DFM Forecasting Framework

The basic building blocks of the DFM forecasting framework generalize the case of a classic factor

structure assuming that
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(i) the set of explanatory variables xt is, up to idiosyncratic noise, driven by a small r < p set of

latent factors ft with

xt
(p×1)

= Γ
(p×r)

ft
(r×1)

+ ut
(p×1)

(2.11)

where ft and ut are independent or weakly dependent, and ut can be both serially and cross-

sectionally correlated.

(ii) The forecasting model is (2.5) allowing for response lags as predictors,

yt+h = γ ′yft + γ ′wt + εt+h (2.12)

An important feature of this framework is the assumption that the same factors that determine

the marginal distribution of xt also determine the conditional distribution of yt. Forecasting equa-

tion (2.12), the centerpiece of Section 2, receives only marginal attention in the DFM literature

since all effort is shifted to reducing the dimension of the set of explanatory variables.

The linear factor structure ascertains that the information content of the regressors has “di-

mension” r, in the sense that the r < p factors ft in (2.11) introduce structure that reduces the

high-dimensionality of the problem. The complexity in the high dimensionality of the problem is

traded off with the need of identifying and estimating additional fictional unobserved variables, the

latent ft.

In addition to the linear factor structure, Stock and Watson (2002) [70] provided a set of

assumptions under which the factors can be identified and estimated via principal components.

Such assumptions have been subsequently modified and updated according to various needs, also

to justify alternative estimators.

2.2 The SDR Forecasting Framework

In contrast to DFM, SDR methods depart from the linear factor assumption. In fact, SDR meth-

ods thrive when the relationship between the target variable and the predictors contains non-

linearities. The SDR apparatus, which we introduce in detail in Section 3, can be viewed as a

generalization of the setup of Proposition 1 that allows the target variable to be a non-linear func-

tion of the predictors. Instead of imposing an artificial latent factor structure on the panel xt,

SDR works directly with observables and seeks to identify how many and which functions of the

explanatory variables are needed to fully describe the conditional cumulative distribution function

F (yt+h|xt). Specifically, SDR aims to identify and estimate functions of the predictors R (xt), so
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that F (yt+h|xt) = F (yt+h|R(xt)). These functions are called reductions because they preserve all

the information that xt carries about yt+h. Obviously, only if such functions are fewer than p do

they represent proper reductions.

Reductions can be either linear or nonlinear functions of the panel data. In order to draw a more

pertinent comparison with the DFM literature, we focus on linear moment-based SDR methods,

which place conditions on the marginal distribution of xt, such as the linearity assumption (2.13),

a first moment condition that coincides with condition (LC) in Proposition 1 and Corollary 1 and

is analogous to the linear factor structure (2.11) of DFM.12

The key ingredients of the proposed SDR-based forecasting framework are:

(i) The linearity condition (LC) on the marginal distribution of xt

E
[
xt|β′xt

]
= Aβ′xt (2.13)

for a matrix A and a p× d full rank matrix β with 0 ≤ d ≤ p.13

(ii) The forecasting model

yt+h = g(β′xt, εt+h) (2.14)

Linear SDR aims to identify a p× d matrix β, of rank d < p, so that R (xt) = β′xt. However,

in contrast with the DFM setup, no dependence on underlying factors is postulated. The forecast,

or forward in SDR, model is specified in (2.14) and is analogous to (2.2), although g(·) is a general

function.

Linear SDR methods are powerful tools that can determine the number of linear combinations

of the explanatory variables xt needed to model the response yt and provide consistent estimators

without the need to specify the functional form of the forecasting model; that is, without specifying

the exact relationship between yt and β′xt. They replace a large number of explanatory variables by

a few linear combinations without loss of inferential information; their number d = rank(β) is the

dimension of the regression problem. Because SDR targets y, typically fewer sufficient reductions

than PCs are needed in order to generate a comparable mean squared forecast error (MSFE). As

12Within the SDR literature the term “moment-based” catalogues estimators conceptually distinct from SDR

“likelihood-based” methods that require assumptions on the distribution of xt|yt+h. Likelihood-based SDR methods

can be compared to likelihood based estimation methods for DFM however we do not pursue such comparison in this

paper for clarity purposes.
13The rank of β is the structural dimension of the regression and d = 0 signifies that yt+h is independent of xt.
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a result, the forecaster can concentrate on the estimation of g(·) with the option of also using

non-parametric regression since the number of predictors is significantly reduced.

2.3 Comparison of Assumptions in the Two Approaches

Proposition 1, Corollary 1, the SDR and DFM approaches all impose conditions on the marginal

distribution of x. However, Proposition 1, Corollary 1 and SDR place restrictions on the observ-

ables, xt. Even though conditions (i) and (ii) in Proposition 1 are difficult to verify in practice,

they are based on the observed xt, a definite progress also advocated by Bai (2003) [3] relative to

assumptions made on unobservable quantities such as latent factors and idiosyncratic errors in the

DFMs. Moreover, the absence of latent variables implies that there is no need to consider double

asymptotics in order to study the statistical properties of SDR estimators for macroeconomic data,

which will be derived with standard large–T asymptotics for the specific SDR method, Sliced In-

verse Regression (SIR), we implement. The latter requires only the linearity condition (2.13), or

equivalently, condition (LC) of Corollary 1 to hold for the linear projections β′x that satisfy the

general forecasting regression model F (y|x) = F (y|β′x).

The SDR approach indicates useful directions in which to explore the assumptions made in the

DFM literature by relating them to conditions (LC) and (CVC).

Factors as Linear Projections of the Regressors – If Γ′Γ is invertible, right multiplying by

(Γ′Γ)−1Γ′ both sides of (2.11) obtains

ft = (Γ′Γ)−1Γ′xt + (Γ′Γ)−1Γ′ut (2.15)

Moreover, if Γ′ut = 0 then ft is a linear transformation of xt with (Γ′Γ)−1Γ′ corresponding to β

in Proposition 1. Asymptotic invertibility of Γ′Γ is required in all core DFM papers, for instance

in Assumption F1.a in Stock and Watson (2002a) [70], or Assumption B in Bai and Ng (2002) [4].

Assumption B(ii) in De Mol et al. (2008) [33] requires invertibility also in finite samples. These

conditions imply that each factor has a nontrivial contribution to the variance of xt, that is the

factors are “evenly spread” across the predictors. Condition Γ′ut = 0 is automatically satisfied in

the population and on average in the sample when non-random factor loadings are considered. In

the case of random factor loadings, it is required they be independent of the factors and idiosyncratic

errors (see Bai (2003) [3]) or assumption F2.1 in Stock and Watson (2002a) [70]).

LC and Factorial Structure – When xt is generated by a factorial structure (2.11), then

E(α′xt|ft) = α′ E(Γft + u|ft) = α′Γft +α′ E(u|ft) (2.16)
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If E(u|ft) = 0, then E(α′xt|ft) is linear in ft for any α. Condition E(ut|ft) = 0 is a standard

assumption in classical factor models and is also assumed in De Mol et al. (2008) [33]. It is relaxed

in core DFM papers (see assumption D in Bai and Ng (2002) [4]) by requiring that the covariance

between ut and ft is asymptotically zero (e.g., see assumptions F1 and M1 in Stock and Watson

(2002a) [70] or assumptions A through D in Bai and Ng (2002) [4]). The condition is instead

implied by the stronger independence assumption between ut and ft in order to obtain inferential

results beyond the estimate of the space spanned by the factors (see, for instance, Assumption FTE

in Bai and Ng (2008) [6]).

CVC and Factorial Structure – Under a factorial structure for xt,

Var(α′xt|ft) = α′[Var(Γft|ft)︸ ︷︷ ︸
=0

+ Var(ut|ft) + 2Cov(Γft,ut|ft)︸ ︷︷ ︸
=0

]α (2.17)

= α′Var(ut|ft)α (2.18)

Therefore condition (CVC) in Proposition (1) holds in a factor model whenever Var(ut|ft) is con-

stant. Independence of ut and ft suffices for ensuring constancy, as is the case in classical factor

models. In the DFM framework, assumptions that place bounds on both the moments of ut and

the dependence of ut on ft go in the direction yet fall short of ensuring that the constant variance

assumption holds.

Factorial Structure Underpinning Alternative Estimators – Although the most common esti-

mator in DFMs is principal components, most of the papers that experiment with alternative

estimators also assume that the data are generated by a factorial structure. De Mol et al. (2008)

[33] assume the approximate factorial structure (2.11) and DFM forecast model (2.5). Within that

framework they show that the population OLS regression forecast (2.3) converges to the DFM pop-

ulation forecast (2.6). They also show that the sample RIDGE forecast, for a wisely tuned choice of

the RIDGE meta parameter, converges to the population OLS regression forecast (2.3) hence to the

DFM population forecast (2.6). The authors have shown a result which is approximately the con-

verse of Proposition 1: under a factor structure, the (assumed true) reduced population model (2.5)

can be replaced with population model (2.2). The theory in the paper is silent on which estimator

is better, however our results in the empirical section suggest that PCR and RIDGE perform very

similarly.14 The theoretical results in De Mol et al. (2008) [33] can be interpreted through the lenses

14It is also shown that LASSO achieves MSFE similar to PCR and RIDGE.
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of Proposition 1 and be taken to suggest that the factorial structure plus the extra assumptions

that they impose induce near-elipticity in the population.

Groen and Kapetanios (2014) [44] also adopt a factor structure although they depart from

forecast model (2.5) after pointing out its various shortcomings and revert to forecast model (2.2).

They show that under forecast model (2.2), PCR can be dominated by PLS and RIDGE.

Kelly and Pruitt (2015) [55] essentially study the PLS estimator under a factor structure and

forecast model (2.5). Their factorial structure allows for both relevant and irrelevant factors and

the latter can distort the performance of PCR. They show in simulations that PLS, a targeted

method, has the advantage of not being affected by irrelevant factors. In practice, in our out-of-

sample forecasting experiment with a large panel of macro variables PLS forecasting performace

does not appear to dominate PCR.

In order to understand why PCR can dominate PLS in practical situations it is necessary

to delve deeper into the intricacies of PLS geometry as done by Carrasco and Rossi (2016) [18].

Among others, they study PLS, PCR, and RIDGE both under a factor structure and in a “ill-

posed” problem in which the eigenvalues of Σx are bounded and the smallest eigenvalue declines

to zero fast as p increases, as would be the case, for example, when the additional regressors are

strongly correlated with those already included in the panel. They establish that, under an ill-posed

problem, the regularization bias of PLS is smaller than that of PCR, whereas the estimation error

may be larger with an uncertain effect on their relative MSE.

In summary, our SDR approach is complementary to the DFM framework. Proposition 1 is likely

a better organizing framework for interpreting empirical results if the final objective is prediction

or forecasting, that is if there is a natural candidate target variable y. However, if the purpose is to

identify the basic forces driving a panel of variables, the DFM framework remains a very effective

device.

3 Sufficient Dimension Reductions

In this section we define general sufficient reductions and introduce the tools we need from moment-

based SDR focusing on linear sufficient reductions.15

Definition 2 A reduction R : Rp → Rq, where q ≤ p, is sufficient if it satisfies y|x ∼ y|R (x) or

15Recently, Bura and Forzani (2015) [15] and Bura, Duarte and Forzani (2016) [16] derived non-linear sufficient

reductions for elliptically contoured and exponential family inverse predictors, respectively.
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equivalently

F (y|x) = F (y|R (x)) (3.1)

A consequence of the definition of sufficiency is that, since (3.1) can be written as F (y|x,R (x)) =

F (y|R (x)) we have y ⊥⊥ x|R, where ⊥⊥ denotes statistical independence. The function R (x) is

called a forward reduction. Although the term “sufficient” was originally coined to capture the

information preserving role of R (x), there is a specific link with the Fisherian concept of statistical

sufficiency (see Cook (2007) [26]). First, we introduce the concept of inverse reduction.

Definition 3 A function R : Rp → Rq, where q ≤ p, is an inverse reduction if

x| (R (x) , y)
d
= x|R (x) (3.2)

If one views y as a parameter, (3.2) states that R (x) is a sufficient statistic for y and it contains

all information x contains about y. Thus, it is a sufficient reduction for the forward regression of

y on x. Proposition 2 provides the formal statement and proof of this fact.

Proposition 2 Assume that the random vector
(
y,x

′
)′

has a joint distribution and let R (x) be a

measurable function of the predictor vector x. Then,

F (y|x) = F (y|R (x)) iff x| (R (x) , y)
d
= x|R (x)

Proof. Denote R (x) with R. Assume F (y|x) = F (y|R (x)) so that y ⊥⊥ x|R and F (y,x|R) =

F (x|R)F (y|R). Therefore,

F (x|R) =
F (y,x|R)

F (y|R)
=

F (y,x,R)

F (y|R)F (R)
=
F (y,x,R)

F (y,R)
= F (x|y,R)

To prove the reverse statement we start with the definition of conditional distribution of y| (x,R)

F (y|x,R) =
F (y,x,R)

F (x,R)
=
F (x|y,R)F (y,R)

F (x|R)F (R)

Using the condition x| (R (x) , y)
d
= x|R (x) , which is equivalent to F (x|y,R) = F (x|R) and

simplifying, one obtains F (y|x,R) = F (y|R).

Proposition 2 sheds light on why inverse regression is a powerful tool for the identification of

sufficient reductions of the predictors: if a function R (x) is a sufficient statistic for the inverse

regression, it is also a sufficient reduction for the forward regression. This implies that one is free

to choose the most convenient way to determine a sufficient reduction, either from the forward or
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inverse regression. An advantage of inverse regression is that it treats each predictor separately

instead of treating the panel as a block. That is, a large p-dimensional forward regression (poten-

tially non-linear) problem is split in p univariate regression problems, which are easily modeled if y

is univariate, or has a small dimension, even if p is large. Furthermore, inverse regression allows a

plethora of estimation methods, including non-parametric, where the curse of dimensionality would

make modeling of the forward regression practically impossible. Most importantly, inverse regres-

sion identifies a function of the predictor data that encapsulates all the information they contain

about the “parameter” to be estimated and predicted, which is the whole time-series yt.

3.1 Linear Reductions and Moment-Based SDR

Moment-based SDR was developed under the requirement the reduction be linear. In linear SDR,

R (xt) is a projection of xt onto a lower-dimensional subspace of Rp that incurs no loss of information

about the conditional distribution F (yt+h|xt), or selected features thereof. In the rest of this section

we suppress subscripts keeping in mind that y is used in place of yt+h and x in place of xt.

We focus the discussion on the identification, and peripherally to existence and uniqueness, of

linear sufficient reductions and show how to exploit inverse regression to identify them.

Condition 1 Suppose the reduction R (x) is sufficient and a linear function of x; that is, it satis-

fies (3.1) and R (x) = α′x for some p× d matrix α.

Let R(A) denote the column space of a matrix A. The definition of sufficiency implies that we

can only identify the subspace spanned by a linear reduction, R(α), rather than α per se, since

F (y|α′x) = F (y|b′x) for all matrices α and b such that R (α) = R (b). A subspace spanned by

the columns of a matrix α with F (y|x) = F (y|α′x) is called a dimension reduction subspace

(DRS).

Existence and Uniqueness – A linear reduction, although a trivial one, always exists, since

one can always set R (x) = x = Ipx. For the same reason, a dimension reduction subspace is

not generally unique. SDR’s objective is to identify a minimal reduction, that is a DRS with

minimum dimension, as well as conditions that ensure existence and uniqueness. Uniqueness and

minimality are jointly guaranteed by focusing on the intersection of all DRS; such intersection, if it

is itself a DRS, is called the central subspace. The latter exists under reasonably mild conditions

on the marginal distribution of x, such as convexity of its support. We refer to Cook (1998)[23] for
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more details and, henceforth, restrict attention to those regressions for which a central subspace

exists.

The identification of a sufficient reduction or, equivalently, the identification of a basis for the

central subspace requires moment conditions on the marginal distribution of the predictor vector

x.

Condition 2 (Linear Design Condition) There exists a full rank p× d matrix v such that

E
[
x|v′x

]
= Av′x (3.3)

for a p× d matrix A.

The following lemma links the linearity condition with inverse regression and points to where

the reduction can be found.

Lemma 1 Assume R(x) = v′x satisfies (3.1), that is, it is a sufficient reduction, and the linearity

condition (3.3) is satisfied for v. Then

Σ−1x [E (x|y)− E (x)] ∈ R (v)

where Σx = var (x). Equivalently,

R
(
Σ−1x [E (x|y)− E (x)]

)
⊆ R (v)

Proof. See Corollary 10.1 in Cook (1998)[23] and Theorem 3.1 in Li (1991) [57].

Lemma 1 obtains that the centered and scaled inverse regression function lives in a subspace,

the inverse regression subspace, spanned by the columns of v. That is, as y varies in R, the random

vector Σx
−1 [E (x|y)− E (x)] is contained in a subspace that is spanned by the columns of v. The

following proposition provides a means to identify such a space.

Proposition 3 The column space of the matrix Σx
−1 Var (E (x|y)) spans the same subspace as the

subspace spanned by Σx
−1 [E (x|y)− E (x)]. That is,

R
(
Σ−1x Var(E(x|y)

)
) = R

(
Σ−1x [E(x|y)− E(x)]

)
⊆ R (v)

Proof. See Proposition 11.1 in Cook (1998)[23], an extension of Proposition 2.7 in Eaton (1983)[36],

and Lemma 1.
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Lemma 1 and Proposition 3 establish a link between the distribution of the data and the

subspace we wish to identify. Notice that in general the column space of Σx
−1 Var (E(x|y)) provides

only partial coverage of the central subspace since the inverse regression subspace can be a proper

subset of the central subspace.

Under additional conditions one can show that more exhaustive capturing of the central subspace

is possible. Other inverse regression moments, such as E (Σx −Var(E(x|y))2 , also live in the

central subspace under the additional constant variance condition on the marginal distribution of

the predictors (Cook and Weisberg (1991) [31]). As our goal is to introduce SDR methodology

to the econometrics literature, we avoid cluttering the present exposition and focus on the first

inverse regression moment E(x|y) via the simple and widely used Sliced Inverse Regression (SIR,

Li (1991)[57]).16

Linear moment-based SDR methods reduce significantly the complexity of modeling and un-

cover the structural dimension of the forward regression problem, i.e. how many derived linear

combinations (directions) of the original predictors suffice to explain y. They estimate the num-

ber and coefficients (up to rotations, as in the DFM literature) of the linear combinations of the

predictors in the forward forecasting equation. SDR does not specify the functional form of the

forward regression. When the number of SDR directions is 1 or 2, a plot of the response versus the

reduction(s) can visually inform forward regression modeling. Dimension 2 or larger indicates that

the forward model involves non-linear functions of the reductions.

3.2 Sliced Inverse Regression

Sliced Inverse Regression (SIR), the first and most widely used linear SDR method, was proposed by

Li (1991)[57]. SIR is a semiparametric method for finding a dimension reduction subspace in regres-

sion. It is based on the results of Section 3.1 and uses a sample counterpart to Σ−1 Var (E (x|y)).17

The name derives from using the inverse regression of x on the sliced response y to estimate the

reduction. For a univariate y, the method is particularly easy to implement, SIR’s step functions

being a simple nonparametric approximation to E(x|y).

Implementation of SIR – In order to estimate M = cov(E(x|y)), the range of the observed re-

16Although SIR generally identifies a subset of the central subspace, it can be shown that SIR is exhaustive when

x|y is multivariate normal with constant variance-covariance matrix (see Cook (2007) [26] and Bura and Forzani

(2015) [15]).
17SIR discretizes y through slicing when y is continuous. It can be shown that the space spanned by the slice

predictor means is a subset of the central subspace (e.g., Cook (1998) [23]).
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sponses Y = (y1, . . . , yT )′ is divided in J disjoint slices S1, . . . , SJ whose union is the range of Y. We

denote the overall sample mean of the sample predictor matrix by x̄ = (
∑T

t=1 xt1/T, . . . ,
∑T

t=1 xtp/T )′,

and let x̄j =
∑

yt∈Sj
xt/nj , where nj is the number of yt’s in slice Sj , for j = 1, . . . , J . The covari-

ance matrix of xt is estimated by the sample covariance matrix Σ̂x =
∑T

t=1(xt − x̄)(xt − x̄)′/T ,

and the SIR seed matrix M with

M̂ =
J∑
j=1

nj
T

(x̄j − x̄)(x̄j − x̄)′ = v̂ar
(

Ê(x|y)
)

The spectral value decomposition of M̂ yields its d left eigenvectors û1, . . . , ûd that correspond

to its d largest eigenvalues, λ̂1 > λ̂2 > . . . > λ̂d. The matrix B̂ = Σ̂
−1
x (û1, . . . , ûd) = (b1, ..., bd)

estimates v in R(x) = v′x of Lemma 1. The SIR predictors to replace x in the forward regression

are the columns of the T × d matrix xB̂ = (xb1, ...,xbd). The number of SIR directions, d, is

typically estimated using asymptotic weighted chi-square tests (Bura and Cook (2001a)[13], Bura

and Yang (2011)[17]), information criteria such as AIC and BIC, or permutation tests (Yin and

Cook (2001)[32]. These tests, though, are valid under the assumption of random draws from the

joint distribution of (y,x), which is typically not the case for econometric data.

How SIR works – SIR finds the directions of maximum variance between slices, with T data

points collapsed in J slice means clustered according to y labels (slices). In the extreme case of

J = T ; i.e., when each slice corresponds to a single y observation, M̂ becomes Σ̂x, and SIR is

identical to PCA. However, for J < T , the variance (noise) of the components within the same

slice is suppressed in favor of their signal, which makes SIR much more efficient in identifying x

projections targeted to y.

3.3 Consistency of SIR Estimators

In Proposition 4, we show that the SIR directions are consistent estimators of directions in the cen-

tral subspace for all xt satisfying the linear design condition (3.3) and have conditional distributions

xt|yt+h, h = 1, 2, ... with finite second moments.

Proposition 4 Assume that the time series xt and xt|(yt+h = s), s = 1, . . . , J , t = 1, . . ., h =

0, 1, . . ., are both covariance-statonary with absolutely summable autocovariances, i.e.
∑∞

l=−∞ |σjj(l)| <

∞,
∑∞

l=−∞ |σjj|yt+h
(l)| <∞, j = 1, . . . , p. Then, the SIR directions are consistent estimators of di-

rections in the central subspace for all xt satisfying the linear design condition (3.3).
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Proof. SIR is based on the covariance matrix Mh = cov(E(xt|yt+h)), t = 1, . . . , T . If yt is discrete

and finite, we can assume yt ∈ {1, 2, . . . , J} without loss of generality. Let ps = Pr(yt+h = s) and

ms = E(xt|yt+h = s), s = 1, . . . , J . Then,

cov(E(xt|yt+h)) =

J∑
s=1

ps(ms − µ)(ms − µ)′

As a result of the second order stationarity with absolutely summable autocovariances of xt and

xt|(yt+h = s), s = 1, . . . , J , t = 1, . . ., h = 0, 1, . . ., the sample moments x̄ and m̂s = x̄s =∑
yt+h=s

xt/ns, where ns is the number of yt’s equal to s, are both consistent as T, ns →∞. Also,

p̂s = ns/T → ps. Therefore,

M̂h =

J∑
s=1

p̂s(m̂s − x̄)(m̂s − x̄)′
p→Mh

as a continuous function of consistent estimators. Consequently, the eigenvectors of M̂h, ûk, k =

1, . . . , p, converge to the corresponding eigenvectors of Mh. Moreover, since the sample covariance

matrix Σ̂x is consistent for Σx, the SIR predictors Σ̂
−1
x ûk, k = 1, . . . , d are consistent for the d

columns of v in the sufficient reduction R(xt) = v′xt. Notation and results for stationary and

ergodic time series we use are provided in Appendix B.

When y is continuous, it is replaced with a discrete version ỹ based on partitioning the observed

range of y into J fixed, non-overlapping slices. Since y ⊥⊥ x|v′x yields that ỹ ⊥⊥ x|v′x, we have

SỸ |x ⊆ SY |x. In particular, provided that J is sufficiently large, Sỹ|x ≈ Sy|x, and there is no loss of

information when y is replaced by ỹ.

Under more restrictive assumptions on the processes xt and xt|(yt+h = s), s = 1, . . . , J , t =

1, . . ., h = 0, 1, . . ., it can also be shown that their sample means are approximately normally

distributed for large T (see Appendix B). Under the same assumptions we can then obtain that

M̂h is asymptotically normal following similar arguments as Bura and Yang (2011)[17] who derived

the asymptotic distribution of M̂ when the data are i.i.d. draws from the joint distribution of

(y,x).

3.4 Inverse Regression as Extraction of Targeted Factors

In general, inverse regression focuses on the set of p inverse regressions

x = a + Bf (y) + e (3.4)
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where y is substituted by the vector of functions of y, f (y), whose choice reflects different inverse

regression based SDR methods. Such functions play the role of observed “factors” and, in practice,

in addition to contemporaneous and lagged values of y, may contain various functions of y such as

polynomials.

SIR is a simple case of (3.4), where f (y) = (f1(y), . . . , fJ−1(y))′ is a vector of step functions

with

fs(y) = I(y ∈ Ss)−
ns
T
, s = 1, . . . , J − 1,

where J is the number of the disjoint slices S1, . . . , SJ whose union is the range of the y-values, I(·)

is the indicator function, and ns is the number of observations in Ss. Parametric inverse regression

(PIR) (Bura and Cook (2001b) [14]) and principal fitted components (PFC) (Cook and Forzani

(2008)[27]) approximate f (y) with continuous functions of the response. These three SDR methods

essentially analyze and extract the first few PCs of the space of the fitted values in (3.4). The term

f (y) is analogous to a factor structure, but it is observable. Intuitively, inverse regression replaces

x with its projection on f (y) and, in so doing, it extracts its “targeted” factor structure.

4 Dimension Reduction Methods via Linear Combinations

In this section we review some widely used estimators, which form linear combinations of the

explanatory variables β′xt as a data reduction step prior to fitting the model used for prediction.

We cast OLS, PCR, a method often used to extract factors in dynamic factor analysis, RIDGE and

PLS regression in a shared framework of maximization of an objective function that distinguishes

them from each other. We also present SIR as the solution to a maximization problem and conclude

with a comparison of the estimators.

To motivate the discussion about the relative drawbacks and advantages of the different meth-

ods, we start from a simple data generating model, where the predictors and the response are

jointly normal, which is the simplest DGP that implies 1-dimensional linear reduction: x

y

 ∼ N
 µx

µy

 ,

 Σx σxy

σ′xy σ2y


We assume Σx is invertible throughout this section. Under this setting, the best predictor under

quadratic loss is the linear regression function,

E(y|x) = µy + β′(x− µx)
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with β = Σ−1x σxy = βOLS . Thus, in a normal DGP the relationship between x and y is entirely

and exhaustively encapsulated in one linear combination of the predictors and OLS is the optimal

population estimator and spans the central subspace. When joint normality does not hold, under

the assumptions of Section 3, βOLS remains one of the basis elements of the central subspace, even

though more linear reductions may be required to exhaustively capture the information that x

carries on y. If the assumptions of Section 3 do not hold, even small departures from normality

can result in linear reductions no longer being exhaustive (see Bura and Forzani (2015) [15]).

4.1 Ordinary Least Squares (OLS)

The OLS coefficient is the solution to the following maximization problem:

max
{β}

Corr2(y,x′β) (4.1)

The first order conditions of the problem lead to the the normal equations Σxβ = σxy and assuming

that Σx is full rank, the unique solution to (4.1) is βOLS = Σ−1x σxy. Therefore OLS selects the

one and only one linear combination x′β with maximum correlation with the target y. The OLS

prediction of the response y at an observed x0 is

yOLS = x′0βOLS

The spectral value decomposition of Σx = UΛU′, where Λ is the diagonal matrix with the eigen-

values λ1 ≥ . . . ≥ λp of Σx on its main diagonal, and U is the p × p orthogonal matrix of the

corresponding eigenvectors, yields Σ−1x = UΛ−1U′. As a result the OLS solution can be written

as βOLS = UΛU′σxy =
∑p

i
1
λi

uiu
′
iσxy. Notice that the population model we assume implies

R(Σx) = R(Σ−1x ) = Rp. In practice, in typical samples encountered in macro and finance forecast-

ing, even if p << T , collinearity or ill-conditioning imply that the estimator of Σx is non-invertible

or numerically unstable resulting in grossly inaccurate OLS predictions.

4.2 RIDGE Regression (RR)

RIDGE regression has been reviewed in the macro-forecasting literature by De Mol et al. (2008)

[33] in connection with Bayesian regression. RIDGE regression minimizes the least squares criterion

on the sphere with radius a:

max
{β}

{
∑p

j=1 β
2
j≤a}

Corr2(y,x′β) (4.2)
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The first order conditions leads to modified normal equations and the solution to (4.2) is

βRR(κ) = (Σx + κI)−1σxy = (I + κΣ−1x )−1βOLS (4.3)

where κ denotes the Lagrange multiplier in the constrained maximization (4.2) and is a function

of a. It is also a meta parameter indexing the RIDGE family. When κ = 0, the maximization

is the same as in OLS. As κ > 0 increases, the solution deviates from the OLS solution and the

penalization shrinks the coefficients of the variables with smaller variance more. Nevertheless,

RIDGE does not remove predictors from the regression. The RIDGE prediction at x0 is

yRR = x′0βRR(κ).

As OLS, RIDGE estimates the response mean with one linear combination of the predictors. In

practice the advantage of RIDGE over OLS comes from the fact that RIDGE does not suffer from

the p < T limitation of OLS, it can handle a large number of predictors regardless of the sample

size, and delivers typically more stable estimation and prediction when Σx is ill-conditioned.

4.3 Principal Component Regression (PCR)

PCR operates in two stages. First, the linear combinations that maximize the variance of x and

are mutually orthogonal are extracted as the solution to the following maximization problem

max
{ui}

{u′iui=1}
{u′iΣxuj=0}i−1

j=1

Var(x′ui) (4.4)

A maximum of p such linear combinations whose coefficients are the eigen-vectors corresponding

to the largest m eigenvalues of Σx, called principal components, can be extracted. Secondly, y is

regressed on the first m(≤ p) principal components (PCs), x̂ = (x′u1, . . . ,x
′um), with β solving

max
{β}

Corr2(y, x̂′β). (4.5)

The number of PCs, m, is a meta parameter chosen by the user. The solution to (4.5) is

βPCR(m) = Σ−x (m)σxy (4.6)

and can be shown to be the minimum norm solution to the normal equations in the subspace

spanned by the linearly independent columns of Σx. The pseudo-inverse Σ−x (m) in (4.6) depends

on m. It is obtained by truncating Σ−1x to retain only the first m components that explain a
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specified amount of variance in the predictors. Such operation entirely disregards the response y

and the p principal components are ordered in relevance to x and not to y. Targeting enters only

in the second stage through the term σxy in (4.6). The PCR-based prediction is

yPCR = x′0βPCR.

To further appreciate how PCR operates consider that since Σx is full rank and σxy ∈ Rp, then

σxy =
∑p

j=1 cjuj for cj ∈ R, and uj , j = 1, . . . , p are the eigenvectors of Σx. Therefore, Σxσxy =

σxy; that is, the covariance of x and y is contained in the span of Σx. When m = p in (4.6),

βPCR = Σ−1x σxy = βOLS . When m < p PCs are used, since uj are orthonormal, (4.6) yields

βPCR(m) = (u1, . . . ,um) diag(λ−11 , . . . , λ−1m )(u1, . . . ,um)′
p∑
j=1

cjuj =

m∑
j=1

cj
λj

uj

That is, only the part of σxy in the span of the first m PCs is captured in βPCR(m) and contributes

to the PCR-based prediction. Therefore, if the m eigenvectors that correspond to the m largest

eigenvalues of Σx happen to miss σxy or part of it, then PCR’s performance will be sub-optimal

in capturing the linear signal about the target. In applications, ill-conditioning of Σx implies that

PCR with an appropriate choice of m dominates OLS in samples typically encountered in the

macro-finance literature.

4.4 Partial Least Squares (PLS)

PLS is an increasingly popular method of dimension reduction that has recently resurfaced in

econometrics, within macro-forecasting applications, with Kelly and Pruitt (2015) [55] and Groen

and Kapetanios (2014) [44], mostly because PLS handles regressions where p > T .18

PLS solves the maximization problem [see Stone and Brooks (1990) [77]]:

max
{βi}

{β′iβi=1}
{β′iΣxβj=0}j−1

j=1

Corr2(y,x′βi) Var(x′βi) (4.7)

and combines in one step the two maximizations carried out separately by PCR, thus “coming

closer” to OLS. Analogously to the extraction of PCs, the maximization in (4.7) can in principle

18PLS followed an uneven trajectory in Econometrics. Originally developed by H. Wold [81] in the mid 70’s, it did

not gain much traction in Econometrics and swiftly fell practically into oblivion. By contrast, it garnered a lot of

attention in Chemometrics, a field that produced a large volume of PLS studies in the late 80’s and early 90’s (see,

for example, Helland (1988) [48]).
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be computed using the eigen-decomposition of Cov(x, y) = σxy, so that it extracts it signal by

focusing on the principal directions of Cov(x, y).19 However, the most efficient way to find the PLS

solution is by applying a algorithm that avoids the computation of Σ−1x and it has been shown to

be the conjugate gradient method applied to the normal equations [see Wold et al. (1984) [82]].20

One can show that prediction from PLS admits a linear form at x0,

yPLS = x′0βPLS(s)

where βPLS(s) = Ws(W
′
sΣxWs)

−1W′
sσxy.

21 The algorithm always converges in the sense that

after p steps it stops with the solution βPLS(p) = Σ−1x σxy = βOLS . However, it is crucial to

understand that contrary to PCR even after s < p steps the population algorithm may reach the

OLS solution, depending on the eigen-structure of Σ−1x , as we explain next.

The eigen-representation of βOLS = Σ−1x σxy =
∑p

j=1
1
λj

uju
′
jσxy can be simplified in two

ways. First, remove all eigenvectors orthogonal to the signal; i.e., remove uj with u′jσxy = 0.

Secondly, eigenvectors corresponding to eigenvalues λj with multiplicity g ≥ 2 are condensed in

a linear combination u∗j with weights that preserve their aggregate contribution to βOLS , so that

u∗ju
∗′
j σxy =

∑g
j=1 uju

′
jσxy. It can be shown that u∗j is itself an eigenvector, orthonormal to the

eigenvectors associated with the remaining eigenvalues λi 6=j . These two operations can reduce the

number of eigenvectors from p to s < p, and βOLS = βPLS =
∑s

j=1 u∗ju
∗′
j σxy. The formula of

βPLS(s) reveals that PLS exhaustively captures the linear signal σxy also when s < p, in contrast

to PCR with m < p. In practice, s is unknown and setting s << p implies some “truncation” of

βOLS so that the realized performance of PLS relative to PCR will depend both on the sample and

on the unknown eigen-structure of Σx.

19When y is a scalar, Cov(x, y) is a vector and its eigen-decomposition is degenerate returning the vector itself,

however when the response is multivariate, PLS entails a proper eigen-decomposition of the matrix Cov(x,y).
20In this section we treat population objects therefore the PLS algorithm we discuss is the population PLS algorithm

studied by Helland (1990) [49].
21The matrix Ws = (w1, . . . ,ws) is obtained after s recursions of the algorithm by stacking the weights generated

at each step. Such weights are initialized with w1 = σxy, and, for s > 1,

ws = σxy −ΣxWs−1(W′
s−1ΣxWs−1)−1W′

sσxy

generates the subsequent weights. The latter are “weighted” covariances of the predictors and the re-

sponse. Helland (1988) [48] showed that the matrix of weights Ws spans the Krylov subspace Ks(Σx,σxy) =

span{σxy,Σxσxy, . . . ,Σ
s−1
x σxy} and subsequent work showed that the PLS solution to the normal equations is the

minimum norm solution in such subspace.
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4.5 Sliced Inverse Regression (SIR and RSIR)

Interestingly also for the SIR estimator one can show that the estimates of the coefficients of the

linear combinations of the predictors are solutions to a maximization problem in the same vein as

OLS and the other dimension reduction methods reviewed so far. The SIR components β′ix, are

the solution to the maximization problem

max
{βi}

{β′iΣxβj=0}i−1
j=1

Corr2(E(x′βi|y),x′βi), (4.8)

which obtains a set of directions β1, . . . ,βp satisfying cov(β′ix,β
′
jx) = 0, i 6= j, and cov(β′ix,β

′
ix) =

1 (see Theorem 6.1 on p. 62 in Li (2000) [58]). Under the normal DGP, E(x′β|y) = µ′xβ +

σ′xyβ(y − µy)/σ
2
y is a linear function of y. Therefore, Corr2(E(x′βi|y),x′βi) = Corr2(y,x′βi)

and the maximization problem of population SIR returns the OLS estimator capturing the linear

signal σxy entirely, just as PLS does. The solution to (4.8) is obtained by solving the generalized

eigenvalue problem Var(E(x|y))vj = λjΣxvj . In practice, when Σx is ill-conditioned, the SIR

generalized eigenvalue problem is unstable resulting highly variable SIR components (although not

as much as OLS in our empirical findings). In the empirical application, we use regularized SIR

(RSIR) that substitutes Σx with an approximation based on many principal components.

4.6 Comparison of Estimator Families

Table 1 summarizes the estimators in this paper. It reports the meta parameter indexing each

family of estimators, the target based “signal”, that is the statistic encapsulating the relationship

of the target y with x, and the scaling matrix of the signal for each estimator. It also reports the

corresponding parameter each estimator uses in the prediction along with its eigen-representation.

Table 1: Summary of Estimators and Their Solutions.

Meta Parameter Inverse Signal β Eigen-decomposition

OLS – Σ−1x σxy Σ−1x σxy

∑p
i

1
λi

uiu
′
iσxy

RIDGE κ (Σx + κI)−1 σxy (Σx + κI)−1σxy

∑p
i

1
λi+κ

uiu
′
iσxy

PCR m Σ−x (m) σxy Σ−x (m)σxy

∑m
i

1
λi

uiu
′
iσxy

PLS s Σ−x (s, y) σxy Σ−x (s, y)σxy

∑s
i

1
λi

u∗iu
∗′
i σxy

SIR d Σ−1x ΣE(x|y)(d) Σ−1x ΣE(x|y)(d) Σ−1x

∑d
i λ̃iũiũi

′

RSIR d Σ−x (m) ΣE(x̂|y)(d) Σ−x (m)ΣE(x̂|y)(d)
∑m
i

1
λi

uiu
′
i

∑d
i λ̃iũiũi

′
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The covariance σxy is the signal relating target and explanatory variables for OLS, RIDGE, PCR

and PLS. What differentiates these methods is the choice of the inverse in the scaling matrix. Since

in practice problems arise from the multicollinearity and ill-conditioning of the design matrix Σx in

OLS, the alternative estimators offer remedies to the “big data” problem by adopting alternative

scaling matrices. The difference among estimators boils down to the choice of the generalized

inverse that approximates Σ−1x and of the meta-parameter that indexes them.

Specifically, RIDGE approximates Σ−1x “in excess” by inflating its main diagonal with (Σx +

κI)−1. The eigen-decomposition of the RIDGE parameters in Table 1 shows all eigenvalues are

retained (the summation is up to p) but the weight of eigenvectors associated to smallest eigenvalues

is shrunk to zero. By contrast, both PCR and PLS use truncation. PCR deletes eigenvalues close

to zero, similar to PLS. However, PLS also makes use of the target and deletes all eigenvalues that

are orthogonal to the signal as quantified by σxy.

SIR distinguishes itself from the rest by adopting an altogether different and potentially richer

signal, the covariance of the expected value of x|y and truncates excessive noise with the choice of

d. In addition, by replacing the covariance by the expected inverse mean, E(x|y), SIR can identify

non-linear signal if present.

RSIR is a modified SIR estimator in the absence of abundant data, as in our empirical ap-

plication. RSIR replaces the raw explanatory variables x with a subset of principal components,

denoted by x̂ in the table.

4.7 Target Signal in Eigen-Decompositions

To gain further intuition on why SIR has the potential of being more accurate, we resort to the

classical variance decomposition satisfied by any random vector x with finite second moments and

conditioning random variable, or vector, y,

Var(x)︸ ︷︷ ︸
targeted in PCA

= Var[E(x|y)]︸ ︷︷ ︸
targeted in linear SDR

+ E[var(x|y)]︸ ︷︷ ︸
noise

(4.9)

Suppose the range of y is sliced in non-overlapping bins and x|y is the restriction of x in the bins

defined by the slices of y. The variance identity (4.9) reveals that the variance of x can be split

into two parts: 1) Var[E(x|y)] or between slice variation in x, and 2) E[Var(x|y)] or within slice

variation. In analysis of variance, Var[E(x|y)] is the signal that x carries about y since it represents

variation of the average value of x associated with different values of y from the overall x mean,
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whereas E[Var(x|y)] represents noise, i.e. deviations of x from its overall average across bins, hence

unrelated to y.

Since PCA performs an eigenanalysis of Var(x), the noise in E[Var(x|y)] may attenuate or

suppress the signal in Var[E(x|y)] and result in PCs that are weakly related to y. PLS targets

Cov(x, y) and can potentially suppress non-linear signal. By contrast, a method that focuses on

the eigen-analysis of Var[E(x|y)] produces derived inputs ordered according to their importance

with respect to y and has the capacity to preserve non-linear signals. Centering on the signal and

ignoring the noise is what sufficient dimension reduction is designed to do.

5 Empirical Application

After reviewing data and methodology, this section contains a classical pseudo out-of-sample (OOS)

horserace among the estimators defined in Sections 4.5 and 4. We examine their accuracy and

robustness against AR(4), a simple and parsimonious process.

5.1 Data and Out-of-Sample Forecasting Exercise

The first step in our empirical implementation is choosing the macro-panel on which to run our

experiment from the rather rugged landscape of data sources used in some of the most important

studies in the DFM macro-forecasting literature.

FRED-MD – The multitude of data sources and data vintages used in the literature has hindered

comparability across studies in macro-forecasting. Many forecast studies have a core set of variables

in common, thought to capture the bulk of ongoing macro activity across varying periods. However,

there is no unanimity regarding other details such as the specific set of non-core variables and most

importantly the data vintage. An initiative spearheaded by McCracken and Ng, and documented

in McCracken and Ng (2015) [60], has set about to impose some discipline on the current and

future production of macro-forecasting studies. An outcome of their project has been the creation

of the macro-panel called FRED-MD.22. We embrace their initiative and adopt FRED-MD as our

dataset of choice. FRED-MD contains a balanced panel of 132 variables with monthly data from

January 1960 (1960m1) resulting in a macro-panel covering more then 50 years.23 The dataset

22FRED-MD is updated in real time by the same staff that maintains the popular FRED database. The data can

be dowloaded from Michael McCracken’s website at the St. Louis Fed
23FRED-MD has fewer variables than the quarterly dataset of 144 variables used by Stock and Watson in [74], the

most widely used dataset in quarterly studies. It has also fewer variables than the dataset of 143 variables used by
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is described in McCracken and Ng (2015) [60] along with a discussion of some data adjustments

needed to construct the panel and a useful chronology and summary of the main alternative macro-

panels that have been used in the DFM literature. We choose to work with monthly data since the

companion quarterly dataset FRED-QD is not available yet and our SDR forecasting procedure

is data intensive. A shortcoming of the dataset is that core PCE inflation and non-farm payroll

employment, two of the most watched series by forecasters and Federal Reserve staff have not been

included yet. FRED-MD contains very limited real-time vintages making real-time forecasting

unfeasible at the moment. Since mid-2016, the ISM requested to discontinue the publication of

their data, widely used as leading indicators of productions, therefore we use the 2016-05 vintage

of FRED-MD, the last vintage to contain the ISM data. Moreover given the intent of creating a

balanced dataset starting in 1960, the authors had to exclude important variables routinely used

in small scale or “judgemental” OLS regressions to forecast target variables of interest to policy

makers and market practitioneers alike.

Handling of missing data in FRED-MD – Five variables in the dataset have a large number

of missing data. Rather than running an EM algorithm to fill in the missing values and achieve a

balanced panel, as done by McCraken and Ng (2015) [60] and Stock and Watson (2002b) [71], we

prefer to exclude them avoiding to bias the sample in favor of PCR. The five excluded variables

are: new orders for consumer goods (ACOGNO), new orders for nondefense capital goods (ANDENOx),

crude oil, spliced WTI and cushing (OILPRICE), trade weighted U.S. dollar index: major currencies

(TWEXMMTH) and consumer sentiment index (UMCSENT). We do not apply any filter for outliers.

Forecast Targets – In principle, any variable in FRED-MD can be used as target. We focus

on a small set of variables that are closely watched and forecasted by monetary authorities and

professional forecasters. The FED dual mandate implies that inflation and labor market mea-

sures are closely monitored. In the absence of Core PCE inflation in FRED-MD, CPI inflation

(CPIAUCSL) is the most natural candidate. Key labor market variables in FRED-MD are total

non-farm payrolls (PAYEMS), the unemployment rate (UNRATE) and civilian labor force participation

(CLF16OV); together these three variables capture the three margins of labor utilization and slack

that have been featured the most in discussing the timing of the next monetary policy tighten-

Stock and Watson in [76]. The latter is a quarterly study but the dataset posted by Mark Watson contains variables

observed monthly. The FRED-MD dataset also contains fewer variables than the 149 regressors used by Stock and

Watson in [70], or the 215 series used by Stock and Watson in [71] from the DRI/McGraw-Hill Basic Economics

database, formerly named Citibase.
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ing cycle. Wage growth is another important indicator of slack; we choose to forecast average

hourly earnings in goods-producing industries (CES0600000008), the most top-level aggregate for

wages in FRED-MD. We also forecast industrial production (INDPRO), a classical measure of real

activity available at monthly frequency. Finally, we include real personal consumption expenditures

(DPCERA3M086SBEA), a key component in tracking models of GDP and one of its main determinants,

real personal income (RPI).

Data Transformations – We adopt the transformations suggested by McCracken and Ng (2015)

[60] and coded in the second row of the original downloaded dataset. We follow the literature and

instead of forecasting the chosen target variables h months ahead we forecast the average realization

of the variable in the h months ahead period. The transformation of the target variable dictates

the forecast target. For example, in the case of inflation, a variable marked as I(2) and transformed

as

yt = ∆2 log (CPIt) ,

we generate the target

yht+h =
1200

h
log

(
CIPt+h
CIPt

)
− 1200 log

(
CPIt
CPIt−1

)
Industrial production is a variable marked as I(1) and tranformed by

yt = ∆ log (IPt)

and the resulting target is

yht+h =
1200

h
log

(
IPt+h
IPt

)
The Pseudo OOS Forecasting Scheme – We conduct a standard out-of-sample (OOS) forecasting

experiment with a recursive window at horizons h = 1, 3, 6, 12, 24.24. These are relevant horizons in

practice and allow exploration of possible variation across horizons within each forecasting method.

As is common in the literature, we adopt h-step ahead regression rather than iterated.

5.2 Normality and Ellipticity Tests

Proposition 1 and the accompanying discussion brought attention to the importance of the distri-

bution of the predictors.

24The transformed and aligned data are available on request.
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Tests of Joint Normality – Joint normality of the explanatory variables x emerged as sufficient

for both (LC) and (CVC) conditions in Proposition 1 to be satisfied for any β. The joint distribution

of FRED-MD variables, after transformations, appears to be far from normal, failing standard tests

as reported in Table 2. Moreover, the lack of normality cannot be attributed to the presence of

outliers. The result is not surprising considering that our panel also includes financial variables

that are known to have “fat tails.”

Table 2: Tests for Joint Multivariate Normality and Ellipticity in FRED-MD.

(a) Normality Tests.

Mardia mSkewness = 5497.98 p-value = 0.000

Mardia mKurtosis = 18381.1 p-value = 0.000

Doornik-Hansen p-value = 0.000

(b) Ellipticity Test.

Q Statistic = 118.63

chi2(122) = 148.78

p-value = .569

Ellipticity Test – Predictor ellipticity ensures the linearity condition (LC) or, equivalently,

the linear design condition (3.3) is satisfied. The elliptically contoured family contains fat tailed

distributions. We performed the multivariate elliptical symmetry test using the semiparametric

rank-based procedure as proposed by Cassart (2007) [19] and implemented by Verardi and Croux

(2009) [78]. We carried out the test across all the time periods and variables in FRED-MD that we

consider in our forecasting experiment. The test has p-value of 0.569 and does not reject the null

hypothesis of ellipticity. In consequence, since Corollary 1 applies, we expect the estimators, aside

from sample variation, to perform similarly with respect to predictive accuracy.

5.3 Estimation Details

The implementation of the estimation methods discussed in this paper necessitates practical choices

that we present herein along with some sensitivity analyses of the results.

OLS and Judgmental OLS – OLS denotes the linear regression model with inputs all the non-

target variables in FRED-MD, the contemporaneous value of the target plus its first four lags. We

did not consider predictors available outside of FRED-MD that have routinely been employed by

practitioners, for instance measures of flows in and out of the labor market, since usually they are

not available starting in 1960. Forecast accuracy of OLS is expected to be subpar even though

in some rare instances OLS performs better than AR(4). JOLS denotes linear regression on the
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contemporaneous value of the target and its first four lags plus a very small number of “indicators”

judgmentally chosen from FRED-MD in accordance to conventional wisdom followed by forecast

practitioners.25 JOLS does not perform well in our experiments, however this could well be due to

the restriction of picking the indicators within FRED-MD.

RIDGE – The RIDGE regularization parameter κ needs to be chosen prior to estimation.26

DeMol et al. (2008) [33] fit a grid of κ values and report MSFE for all. We have included those

values in our implementation of RIDGE and we denote such RIDGE estimators with RIDGE.κ,

where κ is the fixed scalar used. RIDGE.min denotes the RIDGE estimator in which κ has been

chosen to minimize the cross-validation (CV) mean square error. RIDGE.1se denotes the RIDGE

estimator in which κ is chosen one standard deviation away from the minimum of the CV errror,

an option that works well in some applications (see [42] for more details).27

PCR – The PCR forecasting models are linear regressions on a varying number of PCs and the

AR(4) component (contemporaneous plus four lags of the target). They differ by the selection of

the PCs at each OOS forecasting step. First, we follow Stock and Watson (2002) [71] and estimate

a series of PCRs (also known as diffusion indexes) with a constant number of PC’s (m) throughout

the forecasting experiment. We considered m = 1, ..., 30 generating models denoted PC.1 through

PC.30. We also considered a host of PC selection criteria, collectively referred to panel information

criteria (ICp), proposed in the DFM literature, including PCp1, PCp2, ICp1 and BIC3 proposed

by Bai and Ng [4], the criterion proposed by Onatski [64], and the ER and GR criteria proposed

by Anh and Horenstein [1] (these are models PC.PCp1 through PC.GR).28

PCR with Best Subset Selection – The above criteria for PC selection have one characteristic

25The chosen indicators for INDPRO are ISM new orders (NAPMNOI), a traditional leading indicator of manufacturing

production, as well as an index of inventories (ISRATIOx), durable goods orders (AMDMNOx), unemployment claims

(CLAIMSx) and the BAA corporate bonds spread (BAAFFM). Unemployment claims (CLAIMSx) are used to form JOLS

for total private payrolls (PAYEMS) and retail sales (RETAILx), real personal income (RPI) and the S&P500 index

(S.P.500) are used in the univariate regression for consumption (DPCERA3M086SBEA). Explanatory variables for the

unemployment rate (UNRATE) were unemployment claims and mean unemployment duration (UEMPMEAN).
26To implement RIDGE we used the R package glmnet by Friedman et al. (2015) [42].
27In some plots RIDGE.min and RIDGE.1se are collectively denoted as RIDGE.CV to enhance clarity.
28Although we can reproduce the results in McCracken and Ng (2015) [60], where the Bai-Ng criteria are found to

select about 8 to 10 components, especially PCp2 is very sensitive to the maximum number of allowed components

and it can very quickly call for the inclusion of 50 or more PC. Other criteria are more stable. However they all

seem to require more components as the great recession enters into the forecasting window. Other PCR specifications

always deliver better forecasting results.
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in common: if the kth PC is included also all prior PCs, from the 1st to the (k− 1)th, are included.

SDR and PLS produce a re-ordering of the PCs according to the particular target at hand, with

the potential of selecting information in the panel encapsulated in PCs further down the tail. For

this reason, we also applied best subset selection (BSS) on all PCs in the panel. We discovered

that BSS often selects PCs in the tail of the distribution, as far as the 94th component, and that, in

general, variants of BSS perform better than the DFM information-based selection criteria discussed

above.29 BSS requires the specification of a criterion to evaluate models: we experimented with

the default Mallows Cp and BIC but also considered BIC3 and PCp1. A typical pattern across

horizons, targets and sub-samples is portrayed in Figure 1, where for target INDPRO at horizon

h = 12 the average frequency of selection of each PC over the OOS experiment by BSS using

Cp, BIC, BIC3 and PCp1 (top portion of panel 1a) is contrasted with the corresponding average

frequency across all the ICp criteria we tested (bottom portion of panel 1a). Both portions of

panel 1a experience a sharp drop at about 10 components. However, BSS is free to select PCs far

out in the tail and it does so frequently indicating that signal may be better extracted by targeted

methods.30 Regarding CPIAUCSL in panel 1b BSS is very selective also for the first 10 leading PCs,

selecting PC2 rarely whereas it selects PC out in the tail, such as PC99 very often.

Figure 1: Av. Num. of Comp. Selected by BSS versus ICps Criteria Over 1992-2010.

(a) Target INDPRO at h=12. (b) Target CPIAUCSL at h=12.

29We implemented BSS using the leaps R-package by Thomas Lumley (2009) [59] with the backward search option

starting from large models.
30We also used CV to select PCs in unreported results as its performance was largely dominated by the other

approaches.
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PLS – The forecasting equation for PLS consists of a linear regression on a baseline AR(4)

augmented with a fixed number s of PLS components, for s = 1, . . . , 30.31 We also selected s

with cross-validation, however do not report the results as the forecasting performance was not

competitive.32 The superior targeting nature of PLS relative to PCR in sample is manifested by

10 PLS components explaining about 70% of the variance in CPIAUCSL, and 60% of the variance in

INDPRO, as compared to 33% and 40%, respectively, explained by 10 PCs. Moreover, PLS explains

a larger fraction of the variance in the target with no adverse consequences on the variance of the

whole panel it is able to capture. However, we see in Section 5.6 that the out-of-sample forecasting

performance of PCR often dominates PLS.

SIR – We have implemented two versions of SIR 33 in Section 4.5: SIRa refers to SIR components

derived from the inverse regression of xt on yt+h, and SIRb from the inverse regression of xt on yt.

Once the SIR components are estimated, the target is regressed via OLS on the AR(4) component

and a fixed number of SIR components (from 1 to 8). The number of SIR components in cross-

sectional i.i.d. data can be estimated with the asymptotic weighted-chi squared test (Bura and

Cook (2001b) [14]), or the permutation test in Cook and Yin (2001) [32]. However both tests

proved to be very unstable. We empirically verified that a dimension larger than two is rarely

beneficial in this forecasting exercise.

Regularized SIR – For SIR to be effective a substantial amount of data is required, at least

T > 5p, or 5 observations per predictor.34 Our estimation sample is small so we supplemented the

standard SIR estimator with RSIR, a regularized form of SIR (see Appendix 6 for more details). The

SIR predictors were computed from the inverse regression of the first 30 or 70 principal components.

For most samples, 70 PCs explain about 80-90% of the variability in the predictors, so that not

much information on the conditional predictive density of yt+h|xt is lost and SIR on the reduced

data can still identify and estimate part of the SDR subspace. RSIR is a two-step procedure that

can be interpreted as a form of weighted PCR, with the weights being approximately informed by

the conditional distribution of yt+h|xt.35. Fan, Xue and Yao (2015) [39] also apply SIR on PCs

although their approach is conceptually and practically distinct. First they estimate the number

31We implemented PLS using the pls R-package in [61].
32We did not experiment with the cross-validation criteria recently reviewed by Carrasco and Rossi [18], neither

did we select the PLS components with criteria suggested by Krämer and Sugiyama (2011) [54].
33We have implemented SIR using the R-package dr by Weisberg [80].
34Ideally, the sample size satisfies T > 10p.
35Alternative weighting schemes were proposed by Boivin and Ng (2006) [10]
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of PCs using standard ICps criteria, then they apply SIR to condense them in fewer components.

Their approach is rooted in the DFM assumption that the predictors and the response are driven

by the same unobserved common factors, which are identified by the first few ordered PCs and

shared by both the response and the observed predictors. Such assumption, as we argued earlier

on, not only can it not be formally checked but also ignores potentially useful modeling information

in x about y. In contrast, we use PCA as a data pre-processing tool, necessitated by the practical

limitation that SIR either cannot be applied (p > T ), or is unstable (p ≈ T ), and retain as many

PCs as practicable so that as little as possible information in x is sacrificed. RSIR is the only

SDR option in samples where the OOS experiment begins early and it often performs well in larger

samples as well. The notation we use for the different SIR–based models is summarized in Table 3.

Table 3: SIR–based Forecasting Models

Type of SIR SIR predictors Forward Model

SIRa X on yt+h yt+h on yt, 4 lags of yt and SIR predictor(s)

SIRb X on yt yt+h on yt, 4 lags of yt and SIR predictor(s)

R8SIRa First 8 PCs on yt+h yt+h on yt, 4 lags of yt and SIR predictor(s)

R30SIRa First 30 PCs on yt+h yt+h on yt, 4 lags of yt and SIR predictor(s)

R70SIRa First 70 PCs on yt+h yt+h on yt, 4 lags of yt and SIR predictor(s)

SIR and Non-Linearities – By drastically reducing the number of predictor components required

to model the target, SDR allows accommodating forecasting models that are nonlinear in the

components. We fitted forecasting models linear in the AR(4) component and nonparametric in

the SIR component(s).36 The forecasting accuracy results do not support non-linearities in the

conditional mean of the target variable. Plots of the residuals of the fitted forecasting model

versus the second SIR component indicate that the variance of the forecasting models varies for

most targets, so that the signal in the second SIR predictor is contained in the conditional variance

of the targets (see Bura and Forzani (2015)). We did not investigate the issue further as it is

unclear how to model the non-constant variance in an automated fashion over the OOS forecasting

experiment. Nevertheless, the finding that the conditional mean of the target does not contain non-

linearities in the predictors is important as it explains why SIR linear and non-linear regressions

36Specifically we relied on the model by Robinson (1988) [67] with cross-validation as in Racine and Li (2004) [66].

The R-package np developed by Racine and Hayfield (2014) [65] was used.
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do not have a clear forecasting advantage over the other estimators discussed in this paper, except

that of greatly reducing the number of required components.

5.4 Overview of Forecasting Performance

The mean squared forecast error (MSFE) relative to the baseline AR(4) is used as a measure of

forecasting performance throughout.37

No Estimator Family Has an Edge – Overall we found that no single family of estimators has a

universal edge in forecasting our targets. This is in agreement with the finding that the predictors

are jointly elliptically contoured in Section 5.2 and the discussion at the end of Section 5.3. Table 4

reports the best estimators among all estimators discussed in this paper for all targets over 5

horizons and 3 of the subsamples that we considered38 and offers a bird’s eye view of our many

forecast experiments. Table 4 reveals there is no clear “winner” estimator or estimator family. In

some instances, an estimator family is superior to the competitors at forecasting a specific target

over a specific subsample. For example, RIDGE is a particularly effective method to forecast

PAYEMS in the recent recovery as evident from the bottom portion of Table 4. However, this is an

exception.

Dependence of Results on Sample – The forecasting performance greatly depends on the win-

dow of the sample it is based on as well as the target. For instance, the inclusion of the “great

recession” imparts degradation in accuracy for all estimators. In order to study the robustness of

our estimators we also report RMSFE over rolling windows in Section 5.7.

Overall Performance of SIR and RSIR – From Table 4 we can see that regularized SIR frequently

is the best performing estimator for a given target-horizon pair. Regularization even on the first

8 leading PCs appears to be working quite well, although most often more PCs are needed. In

fact, we found that a larger number of PCs is a more robust choice when forecasting at longer

horizons (h = 12 and h = 24), suggesting that important information resides in the last PCs that

explain smaller fractions of predictor variance. Most frequently, RSIR summarizes in one or two

components the information encapsulated in 8, 30 or 70 PCs. SIR on the raw data, without pre-

conditioning appears in the table just a couple of times. This is expected since SIR is data intensive

and the size of the sample does not allow to exploit the full potential of standard SIR.

37We obtained broadly similar results, which we do not report, using the mean absolute forecast error.
38We considered subsample (a) as it excludes the two last most severe recessions. Subsample (b) includes the “great

recession” and subsample (c) only includes the recent recovery.
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Targeted vs Untargeted Estimators – Overall, we found that targeted estimators require fewer

components than untargeted ones for a given level of accuracy. In particular, most SIR–type

estimators in Table 4 make use of only one component to deliver the most efficient form of targeting.

In a few cases, the second SIR predictor appears to capture some signal, which may be a byproduct

of unmodeled heteroskedasticity in the forecasting regression model.

Forecasting Performance by Target – The forecasting performance of the estimators considered

in this paper varies with the target. In general, beating AR(4) is a difficult task. Prices and wages

appear to be very difficult to forecast, a well-known fact in the forecasting literature. The same

is true for real consumption (DPCERA), further justifying recent efforts to use “big data” sources,

such as payments and credit card data, in trying to improve the forecast of such an important

variable (70% of GDP). A notable exemption is RIDGE that is particularly effective in forecasting

PAYEMS over the recovery, whereas PCR appears to have an edge in forecasting wages at longer

horizons. For labor force participation, real personal income, and, to a somewhat lesser extent, the

unemployment rate are far easier to improve upon their forecast relative to AR(4).

38



Table 4: Best Estimators by Target and by Forecast Horizon (MSFE Relative to AR4).

(a) Recursive Out-of-Sample Window from 1992 to 2007.

Forecast Horizon

h=1 h=3 h=6 h=12 h=24
Target Estimator MSFE Estimator MSFE Estimator MSFE Estimator MSFE Estimator MSFE

INDPRO RIDGEb-119 0.87 RIDGEb-141 0.95 R70SIRbc,d-2 0.95 R8SIRbc,d-2 0.9 R8SIRbc,d-2 0.9
PAYEMS R30SIRbc,d-1 0.96 R30SIRbc,d-1 0.94 R30SIRbc,d-2 0.87 R30SIRbc,d-2 0.82 R30SIRbc,d-2 0.75
UNRATE PC-1 0.93 PLS-1 0.76 RIDGEb-0.4 0.76 RIDGEb-0.3 0.78 PC-4 0.88
CLF16O RIDGEb-141 0.94 PC-16 0.87 PC-23 0.81 PC-16 0.74 PC-16 0.68
CPIAUC PC.BSh-8.7 0.89 SIRbd-2 0.94 PC.ONf-1.2 0.97 R8SIRbc,d-2 0.95 R70SIRbc,d-2 0.99
CES060 PLS-1 0.99 PLS-1 1 R8SIRbc,d-1 0.97 AR4 1 AR4 1
DPCER AR4 1 AR4 1 AR4 1 AR4 1 PCF.BSi-9 0.92

RPI R8SIRbc,d-1 0.93 R8SIRbc,d-1 0.88 R8SIRbc,d-1 0.88 RFSIRbc,d-1 0.83 SIRbd-2 0.88

(b) Recursive Out-of-Sample Window from 1992 to 2016.

Forecast Horizon

h=1 h=3 h=6 h=12 h=24
Target Estimator MSFE Estimator MSFE Estimator MSFE Estimator MSFE Estimator MSFE

INDPRO PC-15 0.95 PC-15 0.94 SIRbd-1.4 0.96 R70SIRbc,d-3 0.94 PC-16 0.89
PAYEMS R8SIRbc,d-1 0.88 R8SIRbc,d-1 0.82 R8SIRbc,d-1 0.89 R30SIRbc,d-2 0.9 PC-26 0.81
UNRATE PC-15 0.9 PC-3 0.74 PC-3 0.73 PC-3 0.76 PC-3 0.8
CLF16O PC-11 0.88 PC-17 0.69 PC-20 0.56 PC-17 0.41 PC-16 0.34
CPIAUC PLS-3 0.9 RFSIRbc,d-5.1 0.91 SIRbd-4 0.97 R8SIRbc,d-1 0.99 R8SIRbc,d-1 0.99
CES060 AR4 1 SIRbd-1 0.99 R8SIRbc,d-1 0.94 PC-1 0.92 PC-3 0.82
DPCER PC.ONf-1.5 0.93 PC-1 0.92 RFSIRbc,d-1 0.94 R8SIRbc,d-1 0.94 R8SIRbc,d-2 0.95

RPI PLS-1 0.91 PLS-1 0.85 PLS-1 0.82 PLS-1 0.8 R8SIRbc,d-2 0.87

(c) Recursive Out-of-Sample Window from 2010 to 2016.

Forecast Horizon

h=1 h=3 h=6 h=12 h=24
Target Estimator MSFE Estimator MSFE Estimator MSFE Estimator MSFE Estimator MSFE

INDPRO RIDGEb-949 0.96 RIDGEb-949 0.93 RIDGEb-3532 0.94 R30SIRbc,d-3 0.74 R70SIRbc,d-6 0.39
PAYEMS RIDGEb-141 0.74 RIDGEb-141 0.56 RIDGEb-288 0.5 RIDGEb-288 0.44 R8SIRac,d-2 0.43
UNRATE PCF.BSi-11 0.85 PLS-4 0.64 SIRad-7 0.55 PC.BSh-1 0.38 PC-3 0.31
CLF16O PC-7 0.78 PCF.BSi-11 0.52 RIDGEb-0.6 0.39 PLS-5 0.33 PC-16 0.05
CPIAUC PC.BSh-1 0.96 SIRbd-1.3 0.9 R70SIRbc,d-3 0.94 PC-5 0.87 PLS-12 0.84
CES060 SIRad-7 0.94 SIRbd-1 0.99 R8SIRbc,d-3.5 0.94 R8SIRac,d-2 0.87 SIRad-7 0.8
DPCER PC-5 0.87 PC-5 0.7 PC-5 0.48 PC-17 0.44 R8SIRbc,d-3 0.54

RPI R8SIRac,d-1 0.91 RFSIRac,d-1.6 0.79 PLS-8 0.78 PLS-20 0.64 PLS-21 0.48

aAfter each estimator the number of components used.
bThe number after RIDGE Comp. is value of regularization param.
cR#SIR is regularized SIR. # refers to number of leading PCs used for regularization.
dIn type–a SIR target is yt+h. In type–b SIR target is yt.
eRFSIR is regularized SIR on most frequently selected PCs by out-of-sample best subset selection.
fPC.ON is PCR in which number of components is chosen using Onatski criterion.
gPC.ICP1 is PCR in which number of components is chosen using Bai-Ng criterion.
hPC.BS is PCR in which number of components is chosen by best subset selection.
iPCF.BS is PCR in which number of components is chosen by best subset selection applied on most frequently chosen

PCs in out-of-sample.
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5.5 Forecasting Performance of Regularized SIR

Figures 2 and 3 plot relative MSFE with respect to AR(4) of each estimator versus the number

of components for the eight target variables. Continuous lines denote type–a regularized SIR and

dotted lines denote type–b. We observe that, in general, MSFE is increasing as the number of

components increases indicating that one or two components deliver the best performance.

Performance of Regularized SIR by Number of Components – In Figures 2 and 3 we see that

rarely using 70 PCs in the regularization is beneficial. 30 PCs appear in general to strike a good

balance between the difficulty of SIR with large data and small sample size and capturing informa-

tion in the tail of the PC distribution. The violet lines corresponding to regularized SIR on just a

few PCs in the tail of the distribution show it to fare well across all variables, especially at longer

forecast horizons. By contrast, in general regularization on just 8 PCs exhibits deteriorating per-

formance at longer horizons. Information in the tail of the PC distribution appears to be important

for forecasting at longer horizons.

Performance of Regularized SIR by Type – We can also infer from Figures 2 and 3 that for

prices, wages, consumption, income and payrolls, type–b regularized SIR performs best (lowest

point of dotted lines above lowest point of continuous lines), whereas for industrial production, the

unemployment rate and labor force participation, type–a regularized SIR is best.

Performance of Regularized SIR by Target – Prices (CPIAUC), wages (CES060) and consump-

tion (DPCERA) are traditionally challenging to forecast. SIR also cannot improve much upon the

baseline AR(4), as can be seen in Figure 2. Forecasting industrial production (INDPRO) is difficult

and regularized SIR appears to have a consistent edge on the AR(4) only in the long-run. The

variables for which regularized SIR delivers the best results are labor force participation (CLF16O)

and real personal income (RPI). In the long-run, the forecast of payrolls (PAYEMS) from AR(4) can

be improved upon by regularized SIR, whereas most of the forecasting gains appear to happen in

the short to medium-run for the unemployment rate (UNRATE).
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Figure 2: Relative MSFE vs Number of Components for SIR Estimators for Prices,
Wages, Real Consumption and Real Income (Out-of-Sample from 1992 to 2016).
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Figure 3: Relative MSFE vs Number of Components for SIR Estimators for Labor Mar-
ket Variables and Industrial Production (Out-of-Sample from 1992 to 2016).
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5.6 Comparing Forecasting Performance Across Estimator Families

Figures 4 and 5 plot the relative MSFE to AR(4) against the number of components for PCR, PLS

and the best between type–a and type–b regularized SIR with 8, 30 and 70 components estimator

“families.” Regularized SIR on PCs selected by best subset among all the PCs of the predictors is

also reported (RFSIR). The dashed horizontal line at 1 is the AR(4) reference line.

PLS and PCR – In Figure 4 we see that PLS outperforms PCR in forecasting CPIAUC, but

PCR is better at forecasting wages (CES060), especially at longer horizons and at h = 24 PCR

is essentially the only estimator capable of beating AR(4). Also consumption (DPCERA) is better

predicted using PCR, whereas PLS is better than PCR in forecasting real personal income (RPI).

Turning to Figure 5, overall PCR appears to perform better when it uses many components. With

one or two components, PLS usually dominates PCR.

RSIR – From both Figures 4 and 5 we conclude that regularized SIR summarizes the information

encapsulated in many PCs with very few components (one or two) and performs better or on a par

with PCR and PLS.

The Effect of Targeting on Number of Components – MSFEs of targeted methods, PLS and SIR,

are in general increasing in the number of components. This suggests that targeting methods do

not require many components. In this respect, the extreme targeted nature of RSIR is reflected in

the steepness of the gradient of its MSFE in the number of components, almost always steeper than

that of PLS. Frank and Friedman (1993) [41] pointed out that PLS achieves its best performance

with a smaller number of components than PCR. We show that SIR–type methods offer more

extreme data compression than PLS. By contrast, the MSFE of PCR varies in a non-monotone

fashion with the number of components: In Figure 4 PCR delivers its best forecasting performance

with just a few components, whereas in Figure 5 it needs a large number of components to achieve

competitive advantage over other estimators.

RFSIR and PCF – The magenta dots in Figure 4 and Figure 5 report the MSFE of RFSIR

showing it to often outperform or be on a par with other types of regularized SIR. We do not

report PCF, that is PCR computed on exactly the same PCs, since such PCR specification was

not consistently outperforming other PCR specifications (it made into the list of best of estimators

in Table 4 only twice). Both specifications are based on the same PCs, however SIR is able to

utilize information in the tail of the PC distribution much more effectively, as reflected by its lower

MSFE.
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Figure 4: Relative MSFE vs Number of Components for Prices, Wages, Real Consump-
tion and Real Income (Out-of-Sample from 1992 to 2016).

44



Figure 5: Relative MSFE vs Number of Components for Labor Market Variables and
Industrial Production (Out-of-Sample from 1992 to 2016).
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5.7 Robustness over Subsamples

The panels in Figure 6 through Figure 8 show side-by-side the relative MSFE computed recursively

over the 1992 to 2016 and over the 2010 to 2016 out-of-sample windows for some of the targets

we considered.39 Each point of each time series plotted is the MSFE up to that time point for

the best estimators in each family at the end of the forecast window. For example, if SIR with

one component (denoted as SIR.1) is the best among standard SIRs at the end of the window, its

MSFE is selected for plotting. Only the best among the regularized SIRs is plotted. The estimator

with lowest MSFE among all estimators at the end of the window for a particular target-horizon

combination coincides with Table 4. The grey bands track the upper and lower bounds of MSFE

and provide a comprehensive view of the performance of all estimators we considered. The evolution

of MSFE provides an assessment of the robustness of the various estimators considered in Table 4.

We can follow how close other estimators are to the best performers in Table 4 and how robust

the best estimators are as the recursive out-of-sample window expands. Horizons h = 3, h = 6 and

h = 24 are shown in order to explore the evolution of the MSFE in short, medium and long term

forecasting. The MSFE plotting range is 0.6 to 1.4.40

Effect of the Great Recession – The plots in the left column of each figure show that although

the great recession had an impact on some of the plotted estimators, especially RIDGE, most of

the plotted estimators beat AR(4) over that period. That is, they appear to be better equipped

to capture the non-linearities characterizing the beginning of the recession or benefit from the

information contained in the panel as compared to the simplistic AR(4). This said, the grey bands

spike up in the recession capturing the fact that many estimators break down over that period.

Performance over the Recent Expansion – The columns on the right show MSFEs over the recent

expansionary period. A simple comparison with the column to the left shows that, in general, the

various estimators perform better than AR(4) when recessions are excluded from the out-of-sample

window. Yet, over longer out-of-sample windows, the accumulation of large forecast errors in certain

periods may result in inferior forecasting performance than AR(4). This suggests that selection of

the “meta parameters” in Table 1 indexing the various estimator families is best done on rolling

windows rather than recursive windows. It is also suggestive of some structural instability to which

39MSFE is relative to the AR(4). We considered only some targets to economize on space; plots for all targets are
available on request.

40Estimators for which components have been selected with best subset selection are denoted with “.BS”. For
instance, “PC.BS” denotes PCR where at each step the components are selected by best subset selection with cp,
bic, bic3, or icp1. The specific criterion used can be found in Table 4.
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the AR(4) is somewhat less susceptible. Although RIDGE is often dominated by other estimators,

it has a competitive edge in forecasting PAYEMS in the recent expansion.

Performance across Forecast Horizons – Comparing panels across rows and focusing on the grey

bands we deduce that overall the estimators studied perform better relative to the AR(4) at longer

horizons. Possibly the richer information set relative to AR(4) exploited by the various estimators

reviewed is helpful in forming better long-run projections.

Robustness of SIR Estimators – SIR without regularization rarely performs well when the

estimation sample size is smaller (left columns). It becomes more competitive as the estimation

sample increases (right columns). By contrast, regularized SIR is consistent in its performance over

different forecasting windows, targets and horizons and stands out as the most valuable application

of SDR techniques in our forecast experiments. RSIR summarizes many PCs into one or two

components with no deterioration of forecasting performance.
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Figure 6: Evolution of Relative MSFE in in Out-of-Sample of Best Estimators for CPIAUCSL.

(a) MSFE from 1992 to 2016 at h=3 (b) MSFE from 2010 to 2016 at h=3

(c) MSFE from 1992 to 2016 at h=6 (d) MSFE from 2010 to 2016 at h=6

(e) MSFE from 1992 to 2016 at h=24 (f) MSFE from 2010 to 2016 at h=24
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Figure 7: Evolution of Relative MSFE in Out-of-Sample of Best Estimators for INDPRO.

(a) MSFE from 1992 to 2016 at h=3 (b) MSFE from 2010 to 2016 at h=3

(c) MSFE from 1992 to 2016 at h=6 (d) MSFE from 2010 to 2016 at h=6

(e) MSFE from 1992 to 2016 at h=24 (f) MSFE from 2010 to 2016 at h=24
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Figure 8: Evolution of Relative MSFE in Out-of-Sample of Best Estimators for PAYEMS.

(a) MSFE from 1992 to 2016 at h=3 (b) MSFE from 2010 to 2016 at h=3

(c) MSFE from 1992 to 2016 at h=6 (d) MSFE from 2010 to 2016 at h=6

(e) MSFE from 1992 to 2016 at h=24 (f) MSFE from 2010 to 2016 at h=24
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6 Summary and Conclusions

We (a) introduced sufficient dimension reduction methodology to econometric forecasting and fo-

cused on linear moment-based SDR; (b) derived properties of the SIR SDR estimator for covariance

stationary series; (c) presented a common framework for OLS, PCR, RIDGE and PLS; and (d)

studied the forecasting performance of these four methods and SIR, using the FRED-MD data set

put together by McCracken and Ng (2015) [60].

The empirical results indicate that PCR and regularized SIR exhibit similar performance, which

can be attributed to the ellipticity, strong cross-correlation and noise in the data. The competitive

edge of SIR is its parsimony: it attains practically the same forecasting accuracy using one or two

linear combinations of the predictors. In contrast, both PLS and PCR require many components,

in many cases more than ten. PLS and RIDGE were not found to be competitive for these data

and the time periods we considered in our forecasting exercise, except in few instances.

The performance of SIR, and SDR in general, is impeded by the size of the sample. The

FRED-MD data set is not large enough for SIR to be optimally used. For some periods in the

forecasting exercise, SIR predictors were very unstable as the sample covariance matrix of the raw

predictors was ill-conditioned. Our first stab at the problem consisted of preprocessing the data

in regularized SIR. We are working on developing SDR methods that bypass the inversion of the

sample covariance matrix of the predictors.

Furthermore, dimension two or higher in SIR indicates the presence of nonlinear relationships

between the response and the SIR predictors. Gains in forecasting accuracy can potentially be

realized by the inclusion of nonlinear SIR terms, either in the mean or variance components of the

forecasting model. Plots of the response versus the SIR predictors would inform the construction

of a more appropriate forward model. Even though this is very challenging to incorporate in an

out-of-sample recursive automated forecasting experiment such as in our empirical application, it

can be easily done in real time forecasting.

We conclude by noting that an important contribution of SDR methodology is conceptual as it

shifts the focus from a hypothetical and practically untestable lower-dimensional latent structure

to reductions of the observed data.
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Appendix A: Regularized SIR Algorithm

In relevance to the forecasting model (2.2), the response is yt+h, t = 1, . . . , T, . . ., and the predictors

consist of a group of p exogenous variables xt = (xt1, . . . , xtp)
′ and the current response value yt

along with L of its lags, which is denoted by Wt = (yt−1, . . . , yt−L)
′
.

1. Carry-out PCA on the sample predictor matrix xT : T × p

a. Compute the spectral decomposition of Σ̂x = V̂D̂V̂′, where V̂ = (v̂1, . . . , v̂p) are the

Σ̂x eigenvectors, and D̂ = diag(λ̂1, . . . , λ̂p) is the diagonal matrix with the eigenvalues

of Σ̂x arranged in decreasing order.

b. Let m be the number of principal components that capture most of the variability in x,

either by formal tests such as Bai and Ng (2002) [4] or by simply surveying the scree

plot, i.e. the plot of the ordered eigenvalues versus component number. A scree plot

displays the proportion of the total variation in a dataset that is explained by each of

the components in a principal component analysis. Using the scree plot, the number of

components is estimated to be the number corresponding to the “elbow” of the plot.

c. Let f̂1 = v̂′1x, . . . , f̂m = v̂′mx be the retained principal factors of x.

2. Let x̃t = (f̂t1, . . . , f̂tM , yt, yt−1, . . . , yt−L)′ = (X̃1, . . . , X̃m+L+1)
′ be the (m+L+ 1)× 1 vector

of adjusted predictors, and let q = m+ L+ 1 where L denotes the lags of yt.

3. Set ¯̃x = ( ¯̃X1, . . . ,
¯̃Xq)

T , where ¯̃Xi =
∑T

t=1 X̃it/T , i = 1, . . . , q.

4. For j = 1, . . . , J , let ¯̃xj =
∑

yt∈SJ
x̃t/nj , where nj is the number of yt’s in slice Sj of the

range of the yt values.

5. Compute

m̂ =

J∑
j=1

nj
T

(¯̃xj − ¯̃x)(¯̃xj − ¯̃x)′

6. Compute the SVD of m̂ = ÛΛ̂ÛT , where Λ̂ = diag(l̂1, . . . , l̂q), l̂1 > l̂2 > . . . > l̂q are the

eigenvalues of m̂ and Û = (û1, . . . , ûq) is the q × q orthonormal matrix of its eigenvectors

that correspond to l̂1, l̂2, . . . , l̂q, respectively.

7. Using any dimension estimation method that applies, let d̂ be the estimate of the dimension

d of the regression.
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8. The SIR predictors are SIR1 = Σ̃
−1

û1X̃, . . . ,SIRd̂ = Σ̃
−1

ûdX̃, where Σ̃ =
∑T

t=1(x̃t− ¯̃x)(x̃t−
¯̃x)′/T is the sample covariance matrix of the adjusted predictors x̃.

Appendix B: Covariance Stationary Series

A sequence of random variables xjt is covariance stationary or weakly stationary if and only if

∃µj ∈ R : E(xjt) = µj ,∀t > 0, and

∀t′ ≥ 0,∃γjt′ ∈ R : cov(xjt, xj,t−t′) = E[(xjt − µj)(xj,t−t′ − µj)] = γj,t−t′ = γj(t− t′) = γj(h),∀t > t′

Thus, if xjt is a weakly stationary time series, then the vector xt = (x1t, x2t, ..., xpt) and the time-

shifted vector xt+h = (x1,t+h, x2,t+h, ..., xp,t+h) have the same mean vectors and covariance matrices

for every integer h and positive integer t. A strictly stationary sequence is one in which the joint

distributions of these two vectors are the same. Weak stationarity does not imply strict stationarity

but a strictly stationary time series with E(x2jt) <∞ ∀t, is also weakly stationary. Any function of a

weakly (strictly) stationary time series is also a weakly (strictly) stationary time series. A stationary

time series xjt is ergodic if sample moments converge in probability to population moments.

A multivariate time series xt = (x1t, x2t, ..., xpt) is covariance stationary and ergodic if all of its

component time series are stationary and ergodic. The mean of xt is defined as the T × 1 vector

E(xt) =µ = (E(x1t),E(x2t), ...,E(xpt))
′ = (µ1, µ2, . . . , µp)

′ and the variance/covariance matrix

Σx(0) = var(xt) =
(
(xt − µ) (xt − µ)′

)
= E

(
xtx
′
t − µµ′

)
=

Σx(h) = cov(xt+h,xt) = E
(
(xt+h − µ) (t+h − µ)′

)
= E

(
xt+hx

′
t − µµ′

)
If xjt is a stationary time series with mean µj and autocovariance function γj(h), X̄j =

∑T
t=1 xjt/T

converges in mean square to µj if γ(T ) → 0 as T → ∞ (see Prop. 2.4.1, p. 58 in Brockwell and

Davis (2002); Prop. 10.5, p. 279 in Hamilton (1994)). A sufficient condition to ensure ergodicity

(consistency) for second moments is
∑∞

h=−∞ |γjj(h)| < ∞ (Prop. 7.3.1, p. 234, Brockwell and

Davis (2002)).

The parameters µ, Σx(0), and Σx(h) are estimated from x1,x2, . . . ,xt using the sample mo-

ments x̄T =
∑T

t=1 xt/T , Σ̂x(0) = 1
T

∑T
t=1 (xt − x̄) (xt − x̄)′, and

Σ̂x(h) =

{
1
T

∑T−h
t=1 (xt+h − x̄) (xt − x̄)′ if 0 ≤ h ≤ T − 1

Γ̂(h)′ if − T + 1 ≤ h < 0
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The ergodic theorem obtains that if xt is a strictly stationary and ergodic time series, then, as

T →∞, x̄T
p→ µ, Σ̂x(0)

p→ Σx(0), Σ̂x(h)
p→ Σx(h).

Under more restrictive assumptions on the process xt, it can also be shown that x̄T is approxi-

mately normally distributed for large T . Determination of the covariance matrix of this distribution

is quite complicated. For example, the following is a CLT for a covariance stationary m-dependent

vector process (Villegas (1976), Thm. 5.1). A stochastic vector process x1,x2, . . . is m-dependent

if the two sets of random vectors x1, . . . ,xr and xs, . . . ,xn are independent whenever s− r > m.

Theorem 4 lf x1,x2, . . . is a stationary m-dependent second-order vector process, then

(i) the distribution of
√
T (x̄T −µ) converges to a (possibly degenerate) normal distribution with

zero mean vector and covariance matrix V =
∑m

h=−m Σ(h), where Σ(h) is the covariance

matrix of xt and xt+h;

(ii) the covariance matrix of
√
T x̄T converges to V when T increases indefinitely.

Appendix C: List and Description of Variables

The following set of tables summarizes the variables in FRED-MD. Each table collects variables by

statistical data release allowing a bird’s eye view on the sources of information in the dataset and

imparting an organization of the variables somewhat different relative to the tables in McCracken

and Ng (2015) [60].41 We also briefly describe each statistical data release. Column “T” reports the

transformation used.42 Column “FRED-MD” reports variable mnemonics in FRED-MD dataset.

Column “Description” permits to interpret the series.43. Contrary to Stock and Watson (2005)

[72] we include all variables when computing PCs hence we do not need to flag variables not used

in their computation. Asterisked series are adjusted by McCracken and Ng (2015) (see [60] for

details).

Variables Measuring Income and Consumption – Personal Income, personal consumption ex-

penditures and PCE deflators are released monthly by the BEA. Retail sales are released monthly

41Column “G” reports the grouping chosen by McCracken and Ng (2015) [60], in turn not too dissimilar from
groupings operated in other DFM studies. The groupings codes are: (1) Output and Income; (2) Labor Market ; (3)
Consumption and Orders; (4) Orders and Inventories; (5) Money and Credit ; (6) Interest rate and Exchange Rates;
(7) Prices; (8) Stock Market. We do not use groupings meta data in our empirical analysis.

42The transformations closely follow McCracken and Ng (2015) [60] who in turn follow Stock and Watson. For
series xt transformation codes are: (1) no transformation; (2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt);
(7) ∆(xt/xt11.0).

43The remaining two columns denote the Global Insight code and description; the GSI description allows to map
the individual series into datasets used in older papers.
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by the Census Bureau. Both retail sales and UMCSENTx, the consumer sentiment index from the

University of Michigan, are often used in forecasting PCE (other informative sub-indexes of the

Michigan survey were not included in the dataset), however given its short history we excluded

UMCSENTx from our dataset.

Table 5: Variables Measuring Income and Consumption

id T G FRED-MD Description GSI Description

1 5 1 RPI Real Personal Income PI

2 5 1 W875RX1 Real personal income ex transfer receipts PI less transfers

3 5 4 DPCERA3M086SBEA Real personal consumption expenditures Real Consumption

4* 5 4 CMRMTSPLx Real Manu. and Trade Industries Sales MT sales

5* 5 4 RETAILx Retail and Food Services Sales Retail sales

123 6 7 PCEPI Personal Cons. Expend.: Chain Price Index PCE defl

124 6 7 DDURRG3M086SBEA Personal Cons. Expend: Durable goods PCE defl: dlbes

125 6 7 DNDGRG3M086SBEA Personal Cons. Expend: Nondurable goods PCE defl: nondble

126 6 7 DSERRG3M086SBEA Personal Cons. Expend: Services PCE defl: service

130* 2 4 UMCSENTx Consumer Sentiment Index Consumer expect

Variables Measuring Industrial Production – The most reliable and used data containing mea-

sures of output at a monthly frequency come from the IP system within the statistical release G.17

produced at the Federal Reserve Board and covering industrial production. The IP system contains

information on about 94+ sectors at NAICS 4-digit level and covers the manufacturing, mining

and utilities sectors. INDPRO, the first variable in Table 6 is the top aggregate of the IP system and

the next seven rows in Table 6 represent the splitting and regrouping of the 200+ atoms in the IP

system in so called “market” groups. It was an odd choice to include IPFUELS in FRED-MD given

its idiosyncratic pattern and the fact that it is an atom at a 6-digits NAICS. CUMFNS is one of the

few observable measures of slack and it is computed as manufacturing IP
manufacturing capacity .44.

44Manufacturing capacity is estimated by staff at the Federal Reserve Board using the Quarterly Survey of Plant
Capacity (in turn run by the Census Bureau)
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Table 6: Variables from the Industrial Production System

id T G FRED-MD Description GSI Description

6 5 1 INDPRO IP Index IP: total

7 5 1 IPFPNSS IP: Final Products and Nonindustrial Supplies IP: products

8 5 1 IPFINAL IP: Final Products (Market Group) IP: final prod

9 5 1 IPCONGD IP: Consumer Goods IP: cons gds

10 5 1 IPDCONGD IP: Durable Consumer Goods IP: cons dble

11 5 1 IPNCONGD IP: Nondurable Consumer Goods IP: cons nondble

12 5 1 IPBUSEQ IP: Business Equipment IP: bus eqpt

13 5 1 IPMAT IP: Materials IP: matls

14 5 1 IPDMAT IP: Durable Materials IP: dble matls

15 5 1 IPNMAT IP: Nondurable Materials IP: nondble matls

16 5 1 IPMANSICS IP: Manufacturing (SIC) IP: mfg

17 5 1 IPB51222s IP: Residential Utilities IP: res util

18 5 1 IPFUELS IP: Fuels IP: fuels

20 2 1 CUMFNS Capacity Utilization: Manufacturing Cap util

Diffusion Indexes from ISM Manufacturing Survey – Table 7 collects some of the diffusion

indexes from the Institute for Supply Management (ISM).45 These variables are released the first

day of the month following the reference month, hence they are quite timely and mostly useful in a

nowcasting experiment, although some variables might also contain signal for several months ahead

such as “new orders” a natural measure of future activity. These variables are diffusion indexes,

that is they are expressed as the fraction of respondents that say that activity is up, they are stable

and therefore they are left in levels in the estimation.

Table 7: Diffusion Indexes from the ISM

id T G FRED-MD Description GSI Descr

19 1 1 NAPMPI ISM Manufacturing: Production Index NAPM prodn

29 1 2 NAPMEI ISM Manufacturing: Employment Index NAPM empl

60 1 4 NAPM ISM : PMI Composite Index PMI

61 1 4 NAPMNOI ISM : New Orders Index NAPM new ordrs

62 1 4 NAPMSDI ISM : Supplier Deliveries Index NAPM vendor del

63 1 4 NAPMII ISM : Inventories Index NAPM Invent

112 1 7 NAPMPRI ISM Manufacturing: Prices Index NAPM com price

45 The ISM is formerly known as the National Association of Purchasing Managers (NAPM). The ISM also reports
other interesting diffusion indexes such as “new export orders”, or “level of inventories”, however these variables are
available only starting from the 1990s consequently they have not been included in FRED-MD. The same is true
for the recently introduced diffusion indexes from the Markit survey and data from the services and manufacturing
surveys released by the regional FEDs.
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Variables Measuring Orders and Inventories – Table 8 reports data from the M3 survey, run by

the U.S. Census Bureau. The M3 is based upon data reported from manufacturing establishments

with $500 million or more in annual shipments in 89 industry categories. Data are collected and

tabulated predominantly by 6-digit NAICS (North American Industry Classification System). The

most watched series from this survey is ANDENO=“New Orders for Nondefense Capital Goods”

since it excludes certain highly volatile goods (and not so informative on the business cycle) from

new orders. Such series unfortunately has a short history and it is excluded in our estimation.

Table 8: Variables from the M3 Survey

id T G FRED-MD Description GSI Description

3 5 4 DPCERA3M086SBEA Real personal consumption expenditures Real Consumption

4* 5 4 CMRMTSPLx Real Manu. and Trade Industries Sales MT sales

5* 5 4 RETAILx Retail and Food Services Sales Retail sales

64 5 4 ACOGNO New Orders for Consumer Goods Orders: cons gds

65* 5 4 AMDMNOx New Orders for Durable Goods Orders: dble gds

66* 5 4 ANDENOx New Orders for Nondefense Capital Goods Orders: cap gds

67* 5 4 AMDMUOx Unfilled Orders for Durable Goods Unf orders: dble

68* 5 4 BUSINVx Total Business Inventories MT invent

69* 2 4 ISRATIOx Total Business: Inventories to Sales Ratio MT invent/sales

Labor Market Variables – Table 9 contains variables produced by the Bureau of Labor Statistics

(BLS). The first two rows refer to data from the Current Population Survey (CPS). The rest

of the table refers to variables from the Current Employment Statistics (CES) a program run

each month that surveys approximately 143,000 businesses and government agencies, representing

approximately 588,000 individual worksites. The last 3 variables contain miscellaneous information

on the labor market. CLAIMS=unemployment claims, is a variable originally released at weekly

frequency and comes from the states unemployment insurance system. HWI=Help-Wanted Index

for United States is assembled by the Conference Board and recently it has been corrected by

Barnichon (2010) [9]. Obvious candidates missing in the datasets are labor market indicators

Federal Reserve staff watches, such as data from the JOLTS survey.
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Table 9: Labor Market Variables

id T G FRED-MD Description GSI Description

23 5 2 CLF16OV Civilian Labor Force Emp CPS total

24 5 2 CE16OV Civilian Employment Emp CPS nonag

25 2 2 UNRATE Civilian Unemployment Rate U: all

26 2 2 UEMPMEAN Average Duration of Unemployment (Weeks) U: mean duration

27 5 2 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks U < 5 wks

28 5 2 UEMP5TO14 Civilians Unemployed for 5-14 Weeks U 5-14 wks

29 5 2 UEMP15OV Civilians Unemployed - 15 Weeks Over U 15+ wks

30 5 2 UEMP15T26 Civilians Unemployed for 15-26 Weeks U 15-26 wks

31 5 2 UEMP27OV Civilians Unemployed for 27 Weeks and Over U 27+ wks

33 5 2 PAYEMS All Employees: Total nonfarm Emp: total

34 5 2 USGOOD All Employees: Goods-Producing Industries Emp: gds prod

35 5 2 CES1021000001 All Employees: Mining and Logging: Mining Emp: mining

36 5 2 USCONS All Employees: Construction Emp: const

37 5 2 MANEMP All Employees: Manufacturing Emp: mfg

38 5 2 DMANEMP All Employees: Durable goods Emp: dble gds

39 5 2 NDMANEMP All Employees: Nondurable goods Emp: nondbles

40 5 2 SRVPRD All Employees: Service-Providing Industries Emp: services

41 5 2 USTPU All Employees: Trade, Transportation Utilities Emp: TTU

42 5 2 USWTRADE All Employees: Wholesale Trade Emp: wholesale

43 5 2 USTRADE All Employees: Retail Trade Emp: retail

44 5 2 USFIRE All Employees: Financial Activities Emp: FIRE

45 5 2 USGOVT All Employees: Government Emp: Govt

46 1 2 CES0600000007 Avg Weekly Hours : Goods-Producing Avg hrs

47 2 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing Overtime: mfg

48 1 2 AWHMAN Avg Weekly Hours : Manufacturing Avg hrs: mfg

49 1 2 NAPMEI ISM Manufacturing: Employment Index NAPM empl

127 6 2 CES0600000008 Avg Hourly Earnings : Goods-Producing AHE: goods

128 6 2 CES2000000008 Avg Hourly Earnings : Construction AHE: const

129 6 2 CES3000000008 Avg Hourly Earnings : Manufacturing AHE: mfg

32* 5 2 CLAIMSx Initial Claims UI claims

21* 2 2 HWI Help-Wanted Index for United States Help wanted indx

22* 2 2 HWIURATIO Ratio of Help Wanted/No. Unemployed Help wanted/unemp

Variables Measuring Construction Activity – Table 10 collects the variables that have leading

properties in signaling changes in activity in the construction sector. Permits variables come from

the Census’ building permits monhtly survey of 9,000 selected permit-issuing places adjusted once a

year with an annual census of an additional 11,000 permit places that are not in the monthly sample.

Housing starts come from the Survey of Construction, a multi-stage stratified random sample that

selects approximately 900 building permit-issuing offices, and a sample of more than 70 land areas
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not covered by building permits. Data from the National Association of Home Buildiers such as

existing home sales were not included in the dataset.

Table 10: Leading Indicators of the Construction Sector

id T G FRED-MD Description GSI Descr

50 4 3 HOUST Housing Starts: Total New Privately Owned Starts: nonfarm

51 4 3 HOUSTNE Housing Starts, Northeast Starts: NE

52 4 3 HOUSTMW Housing Starts, Midwest Starts: MW

53 4 3 HOUSTS Housing Starts, South Starts: South

54 4 3 HOUSTW Housing Starts, West Starts: West

55 4 3 PERMIT New Private Housing Permits (SAAR) BP: total

56 4 3 PERMITNE New Private Housing Permits, Northeast (SAAR) BP: NE

57 4 3 PERMITMW New Private Housing Permits, Midwest (SAAR) BP: MW

58 4 3 PERMITS New Private Housing Permits, South (SAAR) BP: South

59 4 3 PERMITW New Private Housing Permits, West (SAAR) BP: West

Variables Measuring the Money Stock and Reserves – These data come mainly from the Federal

Reserve Board H.6 statistical release.

Table 11: Variables Measuring the Money Stock and Bank Reserves

id T G FRED-MD Description GSI Description

70 6 5 M1SL M1 Money Stock M1

71 6 5 M2SL M2 Money Stock M2

72 5 5 M2REAL Real M2 Money Stock M2 (reaal)

73 6 5 AMBSL St. Louis Adjusted Monetary Base MB

74 6 5 TOTRESNS Total Reserves of Depository Institutions Reserves tot

75 7 5 NONBORRES Reserves Of Depository Institutions, Nonborrowed Reserves nonbor

Variables Measuring the Stock Market – These data are elaborated by Standard & Poor's.

Table 12: Measures of the Stock Market from Standard and Poor

id T G FRED-MD Description GSI Descr

80* 5 8 SP 500 SP’s Common Stock Price Index: Composite SP 500

81* 5 8 SP: indust SP’s Common Stock Price Index: Industrials SP:indust

82* 2 8 SP div yield SP’s Composite Common Stock: Dividend Yield SP div yield

83* 5 8 SP PE ratio SP’s Composite Common Stock: Price-Earnings Ratio SP PE ratio

Variables Measuring Credit – These variables are mainly drawn from various Federal Reserve

Board statistical releases such as G.19 and G.20.
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Table 13: Variables Measuring Credit

id T G FRED-MD Description GSI Descr

76 6 5 BUSLOANS Commercial and Industrial Loans, All Commercial Banks CI loan plus

77 6 5 REALLN Real Estate Loans at All Commercial Banks DCI loans

78 6 5 NONREVSL Total Nonrevolving Credit Owned and Securitized Outstanding Cons credit

79* 2 5 CONSPI Nonrevolving consumer credit to Personal Income Inst credit/PI

131 6 5 MZMSL MZM Money Stock N.A.

132 6 5 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A.

133 6 5 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A.

134 6 5 INVEST Securities in Bank Credit at All Commercial Banks N.A.

Variables Measuring Interest Rates – Table 14 contains variables measuring interest rates, yields,

spreads and exchange rates that used to be contained in the statistical release H.15 by the Federal

Reserve Board. The federal funds rate, interest rates on treasuries and commercial paper are still

published in H.15 however publication of the other data has been discontinued as of October 2016

(however it does not affect our study since we use the May 2016 vintage of FRED-MD).

Table 14: Interest Rates, Yields and Spreads

id T G FRED-MD Description GSI Descr

84 2 6 FEDFUNDS Effective Federal Funds Rate Fed Funds

85* 2 6 CP3Mx 3-Month AA Financial Commercial Paper Rate Comm paper

86 2 6 TB3MS 3-Month Treasury Bill: 3 mo T-bill

87 2 6 TB6MS 6-Month Treasury Bill: 6 mo T-bill

88 2 6 GS1 1-Year Treasury Rate 1 yr T-bond

89 2 6 GS5 5-Year Treasury Rate 5 yr T-bond

90 2 6 GS10 10-Year Treasury Rate 10 yr T-bond

91 2 6 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond

92 2 6 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond

93* 1 6 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread

94 1 6 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread

95 1 6 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread

96 1 6 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread

97 1 6 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread

98 1 6 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread

99 1 6 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread

100 1 6 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread

101 5 6 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies Ex rate: avg

102* 5 6 EXSZUSx Switzerland / U.S. Foreign Exchange Rate Ex rate: Switz

103* 5 6 EXJPUSx Japan / U.S. Foreign Exchange Rate Ex rate: Japan

104* 5 6 EXUSUKx U.S. / U.K. Foreign Exchange Rate Ex rate: UK

105* 5 6 EXCAUSx Canada / U.S. Foreign Exchange Rate EX rate: Canada
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Variables Measuring Prices – Table 15 collects the variables from the BLS CPI and PPI statis-

tical releases. For PPI more than 100,000 price quotations per month are organized into three sets

of PPIs: (1) Final demand-Intermediate demand (FD-ID) indexes, (2) commodity indexes, and (3)

indexes for the net output of industries and their products. The CPIs are based on prices of goods

and services that people buy for day-to-day living. Prices are collected each month in 87 urban

areas across the country from about 6,000 housing units and approximately 24,000 points of sale.

Table 15: Measures of Prices

id T G FRED-MD Description GSI Descr

106 6 7 PPIFGS PPI: Finished Goods PPI: fin gds

107 6 7 PPIFCG PPI: Finished Consumer Goods PPI: cons gds

108 6 7 PPIITM PPI: Intermediate Materials PPI: int matls

109 6 7 PPICRM PPI: Crude Materials PPI: crude matls

110* 6 7 OILPRICEx Crude Oil, spliced WTI and Cushing Spot market price

111 6 7 PPICMM PPI: Metals and metal products: PPI: nonferrous

113 6 7 CPIAUCSL CPI : All Items CPI-U: all

114 6 7 CPIAPPSL CPI : Apparel CPI-U: apparel

115 6 7 CPITRNSL CPI : Transportation CPI-U: transp

116 6 7 CPIMEDSL CPI : Medical Care CPI-U: medical

117 6 7 CUSR0000SAC CPI : Commodities CPI-U: comm.

118 6 7 CUUR0000SAD CPI : Durables CPI-U: dbles

119 6 7 CUSR0000SAS CPI : Services CPI-U: services

120 6 7 CPIULFSL CPI : All Items Less Food CPI-U: ex food

121 6 7 CUUR0000SA0L2 CPI : All items less shelter CPI-U: ex shelter

122 6 7 CUSR0000SA0L5 CPI : All items less medical care CPI-U: ex med
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